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Abstract

To simulate solely the spread of SARS-CoV-2 a variety of methods exists, of which many are probably
more suited for prognoses than agent-based models. Yet, in order to to evaluate the impact of policies like
tracing, individual-based models are required.

We developed an agent based simulation model to reproduce the current outbreak of Covid-19 in Austria
that allows for exploratory analysis of tracing in different characteristics. Aim of this work is the presentation
of this model and consequent evaluation and comparison of different policies: Can we achieve containment
solely by successful tracing or do we need additional policies? How large is the impact of tracing, keeping
in mind that a possibly large number of disease progressions are asymptomatic, yet infectious?
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1 Model Definition

We will explain our agent-based Covid-19 model based on the ODD (Overview, Design Concepts, Details)
protocol by Volker Grimm et.al. [30, 31].

1.1 Overview

The modelling of the spread of the disease is based on the interplay of four modules.

1. Population. Altogether the agent-based Covid-19 model is based on the Generic Population Concept
(GEPOC, see [20]), a generic stochastic agent-based population model of Austria, that validly depicts
the current demographic as well as regional structure of the population on a microscopic level. The
flexibility of this population model makes it possible to modify and extend it by almost arbitrary modules
for simulation of population-focused research problems.

2. Contacts. In order to develop a basis for infectious contacts, we modified and adapted a contact model
previously used for simulation of influenza spread. This model uses a distinction of contacts in different
locations (households, schools, workplaces, leisure time) and is based on the POLYMOD study [40], a
large survey for tracking social contact behaviour relevant to the spread of infectious diseases.

3. Disease. We implemented a module for the course of the disease that depicts the current pathway of
SARS-CoV-2 infected persons starting from infection to recovery and linked it with the prior two modules.
Note, that the current version of the model actually does not depict the illness Covid-19 but
solely focuses on the spread of the virus. This strategy was found useful since the feedback
from severe disease outcomes such as hospitalisations or deaths was found negligible small
for the virus spreading behaviour. Illness specific outcomes are evaluated in post-processing
steps, e.g. using specific hospitalisation models. Thus, in the present model recovery is equivalent
with the loss of infectiousness of the agent.

4. Policies. Moreover, we added a module for implementation of interventions, ranging from contact-reduction
policies, hygienic measures, contact tracing to vaccinations. This module is implemented in form of a
timeline of events.

1.1.1 Purpose

The agent-based Covid-19 model aims to give ideas about the potential impact of certain policies and their
combination on the spread of the disease, thus helping decision makers to correctly choose between possible
policies by comparing the model outcomes with other important factors such as socioeconomic ones. In order
to fulfill this target, it is relevant that the agent-based Covid-19 model validly depicts the current and near
future distribution and state of disease progression of infected people and their forecasts.
In the following overview of the model, we will not state any parameter values to focus on the model concept.
A full collection of model parameters including values, sources and justifications is found in Section 1.3.3.

1.1.2 Entities and State Variables

Each person-agent is a model for one inhabitant of the observed country/region. We describe state variables
of a person-agent sorted by the corresponding module.
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Population. Each person-agent contains the population specific state variables sex, date of birth (∼= age)
and location. The latter defines the person-agent’s residence in form of latitude and longitude and uniquely
maps to the agent’s municipality, district and federal state.

Contacts. Independent on how, where and with whom the person-agent has contacts with, it is assigned
an individual scalar contactivity parameter that models, how many contacts this agent typically has. This
parameter is sampled once at the start of the simulation and remains constant for the whole simulation time.
Agents with low contactivity have, on average, a smaller number of daily contacts. Moreover each person-
agent features a couple of contact network specific properties. These include a household and might include a
workplace or a schoolclass. We summarise these as so-called locations which stand for network nodes via which
the person-agent has contacts with other agents. As well as person-agents, locations have their own coordinate
which uniquely maps to political regions. Assignment of person-agents to locations is based on distance of the
agent’s residence to the position of the location. Each day, an agent has a certain number of contacts within
each of the locations, which essentially leads to spread of the disease. To model contacts apart from these
places, every person-agent has an additional amount of leisure time contacts, which are sampled randomly
based on a spatially-dependent distribution. Some locations are themselves summarised in so-called location-
collections: Multiple schoolclasses and one workplace representing teachers are summarised into one school,
multiple households and one workplace representing care home workers are summarised to one care-home. If
a location is part of a location collection, some contacts are scheduled across different locations within the
collection. The contact network is schematically displayed in Figure 1.
For disease spread, contacts between infectious and susceptible agents are important. At each contact the
disease is transmitted with a certain probability (see Section 1.1.4).
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Figure 1: Contact network of agents in the agent-based Covid-19 model. Regular contacts between agents
occur via locations (schoolclasses, workplaces and households), location-collections (schools, care-homes), while
random leisure time contacts extend the standard contact network.

Disease. In order to model the spread of the disease each person-agent has a couple of health states that
display the current status of the agent. They stand for certain points within the patient pathway of an infected
person and enable or disable, respectively, certain person-agent actions. The disease states relevant for the
simulation dynamics are infected, infectious, susceptible, severity and infectiousness. The prior two are boolean
states, that can either be true or false, and multiple of them can be true at a time. The meaning of these
attributes is self-explanatory. The state susceptible is an array of boolean variables, one for each virus strain
to consider in the simulation. To decide the progression of the person-agent’s disease, a state severity, which
can be symptomatic and asymptomatic is sampled as soon as the person-agent becomes infected. Disease state
asymptomatic means that the agent will have no (asymptomatic) or very mild symptoms, so the person is
not going to be detected by the standard test. State symptomatic means, that the person will issue a test as
soon as symptoms set on. As soon as infectious=true the person-agent’s contacts become infectious, and the
probability of infection is based on a continuous infectiousness curve (βdyn(t)) that depends on the sampled
latency, incubation and recovery time (see Figure 2). Finally, since immunisation and disease progression
depends on the virus strain, the current strain is also one of the disease states of the person-agent. It is
inherited from the infection origin and passed on via secondary infections.
To make generation of simulation output easier, we sometimes make use of derived parameters such as unde-
tected (=infected∧¬confirmed) or additional book-keeping variables such as infectious contacts per infected,
reinfection or the full infection tree. Stating all these would make this documentation unhandy and difficult to
read though.
More on the influence of the state variables and how they change is described in Section 1.1.4.
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Table 1: State variables of each person-agent.
Population specific states

sex {female,male}
date of birth date
location (latitude, longitude)

Contact specific states
contactivity R+

household household-location (optional) within care-home-location
schoolclass (optional) schoolclass-location within school-location
workplace (optional) workplace-location

Disease specific states
infected boolean
infectious boolean
susceptible boolean for each virus strain
severity {asymptomatic, symptomatic}
βdyn [0, 1]-valued function of t
strain virus strain

Policy specific states
detected boolean

quarantined boolean

start of

infectiousness
symptom

onset
end of

infectiousness

1.0

0.59
𝛽𝑑𝑦𝑛

Figure 2: Relative infectiousness βdyn(t) dependent on latency, incubation and sampled end of infectiousness

Policies. Policies apply either to person-agent-behaviour directly of indirectly via locations. All locations
except for households are defined open or closed which marks whether this place is available for having contacts.
The directly policy-related states for person-agents relate to the testing regime: An agent with attribute
detected=true is detected by a SARS-CoV-2 PCR or antigen test. Note, that we don’t consider false positive
tests in the model. In the current implementation of the model, any symptomatic person-agent will become
detected in the course of its disease. Agents directly marked as detected will also be quarantined. This state
marks isolated agents which limits their contacts. Quarantine is not only issued via positive test but also due
to tracing measures (see later).
All person-agent states are summarised in Table 1. For the sake of simplicity of speech we furthermore address
mentioned parameters as attributes for the corresponding agents. I.e. an agent with infectious set to true will
be denoted as “infectious agent”.
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1.1.3 Scales

Unlike other agent-based models it is not possible to validly run the model with a smaller number of agents
(e.g. one agent represents 10 or 100 persons in reality) as certain contact-network parameters do not scale this
way (average school size,. . . ). Consequently, one simulation run always uses agents according to the size and
structure of the full population.

1.1.4 Process Overview and Scheduling

Like the underlying population model, the agent-based Covid-19 model can be interpreted as a hybrid between
a time-discrete and a time-continuous (i.e. event-updated) agent-based model:
The overall simulation updates itself in daily time steps, wherein each step is split into four phases. In the
first phase each agent is called once to plan what it aims to do in the course of this time step. In the second
phase, each agent is, again, called once to execute all planned actions for this time step in the defined order.
In the third step, a couple of global actions, i.e. actions not triggered by any person-agent, are executed. We
attribute these actions to the government agent as introduced in [20]. These are vaccinations, screening tests
and external infections. In the fourth step, a recorder-agent keeps track of all aggregated state variables.
On the microscopic scope, each person-agent is equipped with its own small discrete event simulator. In the
mentioned planning phase, each agent schedules certain events for the future which may, but not necessarily
must, be scheduled within the current global time step. In the second phase, the agent executes all events that
are scheduled for the currently observed time interval, but leaves all events that exceed this scope untouched.
This strategy comes with the following benefits:

• In contrast to solely event-based ABMs, the event queue is distributed among all agents which massively
increases the speed for sorting (a solely event-based ABM with millions of complex agents would not be
executable is feasible time).

• In contrast to solely event-based ABMs, usage of daily transition probabilities/rates instead of transition
times is possible as well.

• In contrast to solely time-discrete ABMs, agents can operate beyond the scope of time steps and sample
continuous time-intervals for their state-transitions.

We shortly describe all actions that are scheduled and executed by one person-agent within one time step sorted
by the specified module. We will lay a special focus on the immunisation process. Finally we will explain the
actions of the government agent.

Population. As briefly described in [20], agents trigger birth and death events always via time- and age-
dependent probabilities that apply for the observed time step (i.e. the observed day). If one of these events
triggers, the agent samples a random time instant within the current time step and schedules the event.

Contacts. Also contact specific events are scheduled and executed within the scope of only one time step.
We summarize all contact events planned and executed within one timestep in Table 2.
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Table 2: Contacts sampled within one time-step. In addition to the depicted conditions, quarantined agents
don’t have any contacts outside their household, hospitalised agents don’t sample contacts at all. Moreover,
Poi stands for the poisson distribution, c for the individual contactivity and dlc, dsc and dwc for daily
leisuretime, school and work contacts

condition(s) contact
type

number of
contacts per
time-step

sampling method

household
contact

size of house-
hold - 1

one with every member

leisuretime
contact

Poi(c · dlc) random in whole agent
list, based on regional
distribution

agent has schoolclass ∧ schoolclass is open ∧
schoolclass is not quarantined

school con-
tact

Poi(c · dsc) fraction randomly in
own class, rest ran-
domly in whole school

agent has workplace ∧ workplace is open ∧
workplace is not quarantined ∧ workplace is
not part of location collection

workplace
contact

Poi(c · dwc) randomly in workplace

agent has workplace ∧ workplace is open ∧
workplace is not quarantined ∧ workplace is
part of school or care-home

school/ care-
home work-
place contact

Poi(c · dwc) randomly in whole
school/care-home

household is part of care-home ∧ care-home is
open ∧ care-home is not quarantined

care-home
contact

Poi(c · dwc) randomly in whole
care-home

Contact partners for leisure time are drawn based on an origin-destination matrix on municipality resolution.
The latter has been gathered from mobile data (see Tables 4-5).
Anyway, planned contacts are always scheduled for the beginning of the new time-step. Hence, interaction
between agents is actually limited to the discrete time steps of the simulation. This guarantees, that the states
of both involved agents do not differ between the time of the planning of the event and its execution.

Disease. First of all, it is important to mention that the model is not parametrised by a reproduction number
R0 or Reff , but by a contact-specific probability for a transmission in case of a contact. Nevertheless, the
agent-based model provides the opportunity to generate estimates for R0 and Reff by its original definition:
the average number of secondary infections of an infected agent. Hence, what comes as model input for many
traditional SIR models becomes a model output for the agent-based Covid-19 model.
In case of a contact, infectious agents spread the virus, in specific the specific virus strain, spreads to susceptible
agents with a certain infection probability. This probability calculates as a product of different factors:

P (transmission) = min(βstr · βdyn · βcl · βloc · βex, 1) (1)

Where,

• βstr = βstr(st) depends on the virus strain st. While this value is calibrated for the original SARS-CoV-2,
values for virus variants are set according to estimates for excess transmissibility.

• βdyn = βdyn(t) depicts the current infectiousness of the agent. See above (e.g. Figure 2) for more
information.

• βloc = βloc(loc) depends on the location of the contact. Typically, household contacts are weighted more
transmissible due to the closeness of the involved persons.
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• βcl = βcl(t) depicts the current seasonality (climate) and is parametrised with weather data. It is
proportional to the concentration rate value suggested in [24].

• βex = βex(t, region) depicts impact of exogenous factors which are not included in the model and depends
on time and region. This parameter is typically free for calibration purposes to fit the case numbers to
given data. For forecasts it is set to one.

Anyway, an infectious contact triggers the start of the newly-infected agent’s patient-pathway. This pathway
describes the different states and stations an agent passes while suffering from the Covid-19 disease and can
be interpreted as a sequence of events of which each triggers the next one after a certain sampled duration.
We show this infection strategy in a state chart in Figure 3 and describe how to interpret this figure by
explaining the initial steps in the pathway in more detail: As soon as a person-agent becomes infected, its
infected state is set to true, its susceptible variable is set to false (there are no double-infections in the model),
and its severity parameter is drawn from a given distribution. Moreover, a latency period is sampled according
to a distribution as well. The corresponding “Infectious” event is scheduled for the sampled time instant in the
future. As soon as this “Infectious” event is executed, the infectious parameter is set to true and a parallel
branch that updates the infectiousness is started. After the “Finish Incubation” event, the first branch in the
patient’s pathway decides whether the agent continues being detected by the standard test-regime, or continues
undetected due to mild or nor symptoms at all. All other elements of the pathway follow analogously. All
branches are evaluated with age-class-dependent probabilities (see Section 1.3.3).
After recovery (i.e. after the agent is not infectious anymore), the original susceptibility state before the
infection is restored. Afterwards, immunity is decided in the Sample Immunity event. We explain this process
in detail below in paragraph “Immunity Gain and Loss”.

Policies. Every policy is modelled as a global event occurring before the planning phase of any of the
simulation time steps. Policies are timed-events that are fed into the model as an event-timeline (see Figure
4). The elements of this timeline may include real policies like closure or opening of locations, start of tracing,
vaccination rounds (for a full list, see Table 10), but may also contain incidents that change the model behaviour
but are not directly related to policies, such as raising hygiene awareness. The most outstanding feature of the
model is clearly its ability to model contact tracing policies, since agents are aware of all other agents with
which they had contacts. Using simple housekeeping arrays, these can be logged for a certain period of time
and used for detection and isolation of contact partners.
Due to the huge flexibility of this strategy, the pool of available policies that can be added and combined in
simulation scenarios is huge. In Table 10 the reader finds those which have been included to the canonical
main-version of the model and which are used for the most fundamental research problems.

Immunity Gain and Loss. The immunisation and immunity-loss process is one of the most important
processes in the model. It is crucial to understand that being immune (¬ susceptible), depends on the virus
strain. That means, that person-agents can be immune against infection with one virus strain yet being
susceptible against the other. In the model we distinguish between

• immunisation cause, i.e. all things that may lead to immunity such as recovery and vaccination, and

• immunisation targets, i.e. all things a person-agent could get immune against, usually infection by a
certain virus strain. In some model versions this list is extended by illness-specific outcomes such as
severe or critical disease progression.

In the context of this paragraph we denote the implemented immunisation causes by X1,...,n and the targets
by Y1,...,m. The Sample Immunity event (compare Figure 3) depends on the immunisation cause, say Xi, and
evaluates immunity against all Y1,...,m. This is done as follows:
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1. For all targets Yj , a base probability value bi,j decides whether immunity is gathered at all. To decide
this, a U(0, 1) random number u is drawn. For all j with u ≤ bi,j , susceptible(Yj)=false. For all j with
x > bi,j , the susceptibility values is unchanged.

2. Furthermore, a real valued random number z is drawn using a positive distribution with mean value 1.
For all j selected to become immune, an Immunity Loss event is scheduled in z ·mi,j days, where, mi,j

is a scaling factor which can be interpreted as the average number of days until immunity against Yj is
lost if provided by Xi.

3. If the prior step now leads to two scheduled Immunity Loss events for the same target Yj , the earlier one
is discarded.

This strategy seems unintuitive and unnecessarily complex, but it helps to model the impact of multiple
immunisation events. For example, step 3 allows that a vaccination is able to prolong the immunity previously
gained through an infection. Even without availability of specific data any sequence of immunisation events
can be evaluated in a plausible way. Moreover it provides all necessary freedom to establish immune-escape
variants.

Government-Agent actions. In addition to the dynamic processes triggered by the agents alone, three
modules are implemented which are triggered by the top-level government agent. These are vaccinations,
screenings and imports. The following actions take place on daily basis.
Vaccinations. A number of vaccine doses are distributed to capable model agents. Since the current model
version, we do not distinguish between different vaccine types anymore but only consider first, second, third,
. . . shot and regard them by age and region. A person-agent is capable to get a vaccine if (a) it belongs to
the correct age class, (b) lives in the correct region, (c) is not currently detected, and (c) fulfils the correct
prerequisites (a second vaccine shot can only be issued to a person which already received a first one).
After being vaccinated (Vaccination event), a Sample Immune event is scheduled after a vaccine delay duration.
This event renders a person-agent immune against a strain with a given, shot- and strain-dependent probability
for a given shot- and strain-dependent time (see Figure 3). The concept is equivalent with the immunisation
process after recoveries (see above). Thus the effects of multiple vaccine doses accumulates.
Screening Tests. A certain number of randomly selected non-confirmed person-agents are selected and screened
for being infected. The modelled tests have a certain sensitivity so that infected agents are only found with
a certain probability. If the test is positive, the found person-agent is labelled as confirmed and treated
equivalently to the symptomatic agents (compare Make Test event in Figure 3).
Imported Cases. A certain number of randomly selected agents with age between 20 and 40 are chosen for
having external contacts with the virus, in specific, a certain virus strain. This age class was chosen since it
was evaluated to be the most reactive w.r. to the spread of new virus strains. If the selected person-agent is
susceptible against the strain, the Infection event is triggered (compare Figure 3).
This mechanism introduces the virus into the simulation. By varying the distribution for the imports, also new
virus strains are introduced in the infection network.
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Figure 3: State chart of the patient pathway of a person-agent in the agent-based Covid-19 model. Only those
state variables that are changed by the corresponding event are labelled, all others remain at the current value.
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Figure 4: Event-timeline as the input of the simulation model in contrast to standard model parameters.

1.2 Design Concept

1.2.1 Basic Principles.

Increasing the level of detail from a standard epidemiological model for simulation of disease waves to a model
that is capable of dealing with various different policies is a huge step with respect to model complexity. It
excludes the use of macroscopic strategies and requires modelling of a contact network and contact behaviour.
Consequently a detailed demography, spatial components and stochasticity need to be introduced to the model
which come with a huge number of additional parameters and parameter values.
Hence, we were very careful that the agent-based model is designed as simple as possible yet tracking the most
important features for evaluation of certain policies. Hereby, many details within the pathway of an infected
person and, in particular, lots of details within the personal daily routine are simplified to avoid indeterminable
model parameters and unpredictable model dynamics.

1.2.2 Emergence.

In addition to the classic emergence of nonlinear epidemiological effects, analysis of the effects of interaction
between different measures is one of the key objectives of the model. For example, seemingly unconnected
policies like school closure and contact reduction for the 65+ might lead to unexpected effects when applied
simultaneously. More generally speaking, the model displays that the individual effects of applied policies do
not add up linearly.

1.2.3 Sensing.

Agents’ perception of reality is one of the key problems of modelling Covid-19 as no agent is actually aware
of its own disease and, more importantly, infectiousness until symptoms occur. Therefore, agent parameters
can be distinguished into two sets: the ones the agent is aware of (e.g. detected), and the ones it is not (e.g.
infected, infectious).
Interestingly, besides the individual perception of agents and the perception of an omniscient observer, there is
also a third level of perception included into the model: the perception of the general public. While an individual
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Figure 5: Infections per infected of a fully unconstrained epidemic wave. Note, that such a scenario causes the
average number of secondary infections per infected tracked over the whole time-frame (here calculated as µ)
to be slightly smaller than 1. The dispersion factor d can be estimated by the stated formula considering mean
and variance of the distribution.

agent knows about its symptoms, the public is not yet aware of this additional infected case, until the person-
agent has reacted on the disease, has had itself tested and eventually becomes confirmed. Consequently, the
levels of perception can be sorted with regards to their amount of knowledge:

omniscient observer > person-agent > general public.

1.2.4 Interaction.

Interaction between agents only occurs in form of contacts at locations or leisure time. The features pro-
vided by the underlying population model make it possible to investigate contacts on a very local level. As
described before, leisure time contacts are weighted by their regionality, but also school and workplace con-
tacts depict locality: Using specified latitude and longitude for locations, it is possible to assign person-agents
with distance-dependent probabilities (see Section 1.3.1). Consequently, interactions between agents follow a
spatially-continuous locally-biased contact network.

1.2.5 Stochasticity.

Basically all model processes, including the initialisation, contain sampling of random numbers. Therefore,
Monte Carlo simulation is applied, results of runs are averaged and also their variability is assessed (see Section
2.1).
Yet, besides being time-consuming to flatten, the stochasticity of the model is actually its key strength. It
allows to model heterogeneity and skewness of the infection-network which distinguishes the model from classic
macroscopic approaches. This specifically refers to the way, how contacts are modelled: Since the person-agent’s
contactivity is initially drawn from a Gamma distribution, the contacts sampled via Poisson distribution result
in a so-called Gamma-Poisson mix, which is by definition Negative-Binomial distributed. This strategy allows
to directly parametrise the skewness of the contact network to published information on the dispersion factor
of Covid-19 clusters (see Figure 5).
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Figure 6: Visualisation of the origin destination matrix used for assignment of persons to locations. Dark red
lines indicate many inter-regional contacts, thin white and yellow lines indicate few contacts.

1.2.6 Observation.

Inspired by [41], a recorder-agent takes care about tracking and aggregating the current status of the simulation.
At the end of each global time step, all person-agents report to the recorder-agent which furthermore keeps
track of all necessary aggregated model outputs. This includes for example confirmed active cases, confirmed
cumulative cases, undetected agents, incubating agents, recovered agents, agents in a certain hospital, or average-
number of contacts per infectious agent. If required, numbers can also be tracked with respect to age, sex,
regional level and/or contact-location.

1.3 Details

Clearly, Section 1.1 could only outline the basic concepts of the model and left a lot of technical and modelling
details necessary for a reproducible model definition open. In particular, this refers to the highly non-trivial
initialisation process of the model. In this process, two problems occur that require completely different
approaches. The first problem considers the generation of the person-agents, locations and hospitals in the
first place. The second problem deals with the initialisation of the status quo of the distribution of the disease
states of the agents for the specified initial date.

1.3.1 Initialisation of Person-agents, Locations and Hospitals.

A lot of problems that deal with the sampling of the initial population have already been solved in the
original GEPOC model [20]. In particular this refers to the Delaunay-triangulation-based sampling method
for locations. We apply this method to merge information from the national statistics institute and the global
human settlement layer [28]. Consequently, besides initialisation of the disease states which is described in the
next section, only new methods for location- and hospital-generation had to be implemented.
In general, locations and location collections are initialized in a two step mechanism. First, the location /
location collection is created with a certain capacity. Secondly, the location / location collection is filled with
agents / locations using a regional distribution. Similar to the sampling algorithm for leisure time contacts,
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an origin-destination matrix on district level (see Figure 6) gathered from mobile phone data is used in the
following way:

1. Filter the agent list for all agents that are suitable for being assigned to the location.

2. Given a certain location in district x and municipality xx, draw a random district y according to the
distribution in the matrix.

3. If x 6= y, pick a randomly chosen agent from district y. If this fails, return to 2.

4. If x = y, a Bernoulli experiment decides to either pick a random agent from xx or from somewhere else
in x. If this fails, return to 2.

For location collections, we follow more-less the same strategy, with suitable locations instead of agents. We
go into more detail about sampling and filling for the specific location types:
Households are initialised given a discrete distribution of their sizes and household members. We distinguish
between five groups: children (age < 18), male and female adults (18− 64) and male and female retired (65+).
The number of households is created on demand, so that every person-agent can be assigned a household
eventually. Household coordinates are drawn according to the same algorithm as creation of person-agents and
are filled, as explained above. After a household is successfully filled, all coordinates of all household members
are set to the coordinate of the household.
Workplaces1 are initialised with a certain capacity by a workplace-sampler based on district-level data about
branches of industry. Given the district, the coordinate is sampled re-using the mentioned sampler for person-
agent coordinates. Note, that the workplace is hereby also assigned a certain occupation which will be required
for sampling of care-home and school workplaces. Filling of workplaces works analogous to households, yet
coordinates of person-agents remain unchanged.
Schools and schoolclasses are initialised based on known distributions w.r.t. average school size and number of
pupils in total. We distinguish between schools for children below 14 and older. A school-sampler iteratively
generates schools and assigns a random number of new created schoolclasses (triangular distribution) with
fixed capacity. The process is repeated until the sum of all schoolclass capacities matches the known number
of pupils in reality. In a next step, each school is assigned one of the created workplace with branch “teaching”
and the school’s coordinate is set to the coordinate of the workplace. In a next step, classes are filled with the
same algorithm as workplaces. Clearly, the number of model agents in the group of agents below 18 is larger
than the number of pupils. Consequently, we force distribution of all 6 to 14 year old agents, and distribute as
many 15 to 18 year old agents as possible. All remaining 15 to 18 year old agents are considered to be working
or unemployed.
Care-homes are generated with a fixed size and providing space for a fixed number of inhabitants. Analogous to
schools, every care-home is assigned a workplace with the corresponding branch and coordinates are harmonized.
Furthermore, suitable households are assigned using the mentioned filling algorithm.

1.3.2 Initialisation of the Disease State

The spread of SARS-CoV-2 displays probably better than any other system that the most dangerous enemy
is the invisible one. While confirmed infected persons are detected and well known, they hardly contribute to
the spread of the disease – they are already isolated properly, and most infections occur even before the onset
of symptoms.
Consequently, it is not possible to simply “start” the simulation with a certain number of confirmed cases,
acquired for example from official internet sources. Valid values for pre-symptomatic (e.g. persons within

1Workplaces should not be confused with total companies. They rather represent the different teams where the members are
in regular contact with each other.
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latency and incubation period) and asymptomatic persons need to be acquired as well – yet, this number is
hardly measurable in reality.
In order to solve this problem, the model is either started from the start or from a fully serialised image of an
other simulation. If started from the beginning, the initial infections are imported via the government agent in
the course of the daily imported cases. If started from a serialised state, all agents and locations are imported
from large, zipped json files. Accordingly, the simulation also provides a function to export its final state to
these files.

1.3.3 Parametrisation

With respect to parametrisation, we will distinguish between model input and model parameters.
Classical model parameters specify scalar or array-typed model variables that are initialised at the beginning
of the simulation and keep their value for the entire simulation time. Examples are the infection probability of
the virus strains, or the number of school classes.
In contrast to model parameters, the model input consists of an event-timeline that describes at which point
in time a certain incident changes the behaviour of the model. This incident usually refers to the introduction
of a policy, e.g. closure of schools or start of tracing, but may also refer to instantaneous changes of model
parameters which are related but cannot be directly attributed to policies, e.g. the increase of compliance
among the population to increase hygiene.
In the following, we state lists of used parameters and parameter-values (status ) including corresponding
sources and/or justifications. They are found in Tables 3 to 9. Table 10 states a list of possible event-timeline
elements that can pose as the model’s input.

Table 3: List of population specific parameters (status October 13, 2022)
parameter description value source
birthrates, deathrates,
initial population, re-
gional distribution

parameters used by
the underlying popu-
lation model

see source rates and population tables
from Austrian National Statis-
tics Institute [10]. Maps from
the Global Human Settlement
Project [27] and [4].

1.3.4 Calibration

There are various parameters of the model which are calibrated to data:

Parameter: βstr of base virus
Reference: Austrian data for new confirmed cases (Epidemiologisches Meldesystem, [2])

Parameter: parameters of policy events and βex.
Reference: Austrian data for new confirmed cases (Epidemiologisches Meldesystem, [2])

Parameter: excess transmissibility of variants
Reference: GISAID data for variant split of new confirmed cases [35].

Parameter: immunity loss after recovery
Reference: Partially from external data sources, partially calibrated to confirmed reinfections in Austria
(Epidemiologisches Meldesystem, [2]).
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We want to explain the first two in detail, since they are the most relevant for reproducibility of the results.
For the latter two we refer to [16] and 2 respectively.

Parameter βstr of base virus. Clearly, there is no valid data available for direct parametrisation of the
βstr parameter of the original SARS-CoV-2 virus which is the most fundamental of the factors that decide
about a transmission in case of a direct contact. First of all, this parameter is hardly measurable in reality
and moreover strongly depends on the definition of “contact”. Consequently, this parameter needs to be fitted
in the course of a calibration loop.
The calibration experiment is set up as follows:

1. We vary the parameter βstr using a bisection algorithm.

2. For each parameter value, the simulation, parametrised without any policies, is executed several times
(Monte Carlo simulation) and the results are averaged.

3. The average time-series for the cumulative confirmed cases is observed and cropped to the beginning
upswing of the epidemic curve, to be specific, all values between 200 and 3200. In this interval the
growth of the curve can be considered as exponential.

4. The cropped time-series is compared with the corresponding time-series of real measured data in Austria,
specifically the confirmed numbers between March 10th and 20th 2020 (source EMS system, [2]).

5. Both time-series are compared w.r.t. the average doubling time of the confirmed cases. The difference
between the doubling times is taken as the calibration error for the bisection algorithm.

Note: As the sample standard deviation of each observable of the runs has been observed to be at most a fifth
of the sample mean, the iteration number of nine for the Monte Carlo simulation has been considered to be
sufficient for calibration purposes w.r.t. the ideas in [21,34].

Parameters of policy events and βex. Including policy events according to the events in reality should
lead a well fitting simulation result. Yet, as described in Table 10, most policy events have free parameters
most of which cannot be directly measured in reality, in particular parameters related to policy compliance
or hygiene awareness or the population. For the calibration we assume that the qualitative impact of the
parameter on the case numbers (i.e. mitigating or enforcing), maximum and minimum of the parameters are
known.
Moreover, even if all policies in reality are properly parametrised, still differences between model results and real
case numbers will be given. Reasons for these differences can be manifold and range from changing adherence,
short-time weather effects, single mass gatherings, changed test system, or simply randomness. To fix these,
also events changing the βex parameter (i.e. change βex events) are added to the timeline whenever necessary.
In summary, all free parameters of policy events and the free parameters of the change βex events can be written
in two vectors: one vector ~p containing the parameter values and one strictly ascending vector ~t containing
the corresponding dates of the events. Furthermore we exploit the latter property: Say, parameters pj , j < i
are properly calibrated, then the model fits the case data until ti. Consequently, parameter pi is the only one
which is capable to ensure the fit of the simulation until ti+1 – actually until ≈ ti+1 + 7[d] since timeline events
influence the case numbers delayed by about one week.
Consequently, we define the calibration algorithm iteratively. Starting with i = 1:

1. Vary the parameter pi in the event for time ti. If the parameter is region specific continue with 2, else 3.
2https://www.dwh.at/en/news/sars-cov-2-immunity-level-estimate-peek-behind-scenes-of-computation/
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2. Perform the bisection algorithm (steps 3-8) pointwise and simultaneously for each region using the regional
case data as a reference. We thus simplify the calibration problem by ignoring the inter-regional impact
of the parameter values.

3. Define an interval [pli, p
u
i ] which certainly contains the parameter value.

4. Define pmi :=
pl
i+pu

i

2 . If pui − pli < ε stop, fix pi := pmi and continue at 1 with i+ 1.

5. Furthermore, run the simulation with parameter pmi .

6. Compare the simulation result x for the detected cases with the officially reported ones x̂ at time ti+1+7[d].
If the parameter is known to mitigate the spread continue with 7 else 8.

7. If x > x̂, then set pli := pmi . Set pui := pmi otherwise. Continue with 3.

8. If x > x̂, then set pui := pmi . Set pli := pmi otherwise. Continue with 3.

2 Model Implementation

Simulation of agent-based models like the agent-based Covid-19 model is a huge challenge with respect to
computational performance. As the model cannot be scaled down, almost 9 Million interacting agents need to
be included into the model in order to simulate the spread of the disease in Austria.
These high demands exclude most of the available libraries and software for agent-based modelling including
AnyLogic [29], NetLogo [44], MESA [38], JADE [14] or Repast Simphony [42]. Most of these simulators cannot
be used as their generic features for creating live visual output generates too much overheads.
Consequently, we decided to use our own agent-based simulation environment ABT (Agent-Based template,
see [3]), developed in 2019 by dwh GmbH in cooperation with TU Wien. The environment is implemented in
JAVA and specifically designed for supporting reproducible simulation of large-scale agent-based systems.
The next section contains more technical details about the implementation.

2.1 Technical Implementation Details

The implementation of the agent-based Covid-19 model uses JAVA 11 and applies the UniformRandomProvider
random number generator (RNG) by Apache Commons [1]. This RNG implements a 64 bit version of the
Mersenne Twister [39] and exceeds the standard RNG of JAVA, a simple Linear Congruential Generator, in
both performance and quality.
The simulation itself is always executed in a Monte Carlo setting and several runs with different RNG seeds are
averaged. Due to the huge number of agents, a Law-of-Large-Numbers-effect can be observed (similar to [15]
Chapter 5.2), and the standard deviation of the model output is always comparably small. Consequently,
Monte Carlo replication numbers of 10 to 20 are usually enough to estimate the mean sufficiently well (we
apply the algorithms from [21,34]).

3 Features and Limitations

Due to the highly flexible policy timeline, the model is capable of testing and combining lots of different policies
in different characteristics at different times. Hence, it can easily depict almost any specified policy announced
in reality, if estimates for the policy parameters are available.
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The latter statement particularly refers to combination of policies: although the model correctly depicts the
epidemiological impact of the combination of policies, the social impact needs to be parametrised manually.
For instance, the causal relation between closed schools and intensified parent-children contacts needs to be
parametrised and is not given by the model dynamics.
Unfortunately, as the model cannot be scaled down, a huge number of agents lead to long computation times,
and the necessity of Monte Carlo simulation for flattening of stochastic results increases the time required to
get simulation output even further. Consequently, the simulation’s capabilities of dealing with multi-variate
calibration problems are limited. Consequently, the model is well capable but unhandy to generate (short-time)
prognoses.

4 Model Extensions and Applications

Since the model is actively used within decision support in Austria, a couple of model extensions needed to
be implemented on direct demand. In this section, we roughly explain the most important of these extension
modules.

4.1 Tracing

Purpose. In April 2020 Austria started with rigorous contact tracing and subsequential isolation of K1 (=
direct contact) cases. Our goal was to evaluate how much impact this policy has considering different variants
of tracing.

Model. The model evaluated the impact of the policy by comparison with a comparable amount of contact-
reduction policies required to compensate the absence of tracing. A calibration process was involved (see [18]).

Data. We used official data for new confirmed cases in Austria.

4.2 Vaccination Planner

Purpose. By Summer 2020, the model has been used to council the Austrian vaccination planning board.
In this process, the model was put in the loop of an optimization routine to generate an optimal vaccination
prioritization plan. The reader is referred to [33] and [19] for more information.

Model. We regarded five target groups for vaccination round events (elderly, mid-age, young, health-care
workers, vulnerable). To depict the latter, additional relevant co-morbidities were distributed among the agents.

Data. We used freely available published data from different sources. The reader is referred to [33].

4.3 Mass-Testing

Purpose. In winter 2020 the Austrian government started a “mass-test” initiative in which a broad cross-
section of the country’s inhabitants were tested for SARS-CoV-2 infections. In this process, undetected and
spreading CoV infected person should be made visible and put under quarantine. Our goal was providing
estimates for the impact of this policy.
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Model. Mass tests are modelled as an additional event type that can be used in the event timeline as model
input. As soon as the event is triggered, a certain number/fraction of inhabitants is tested for SARS-CoV-2.
If an unconfirmed/pre-symptomatic infected agent is found in this process, it is set to confirmed and isolated.

Data. We used official data for test sensitivity and test specificity and varied the number of participants.

4.4 Immunisation Level

Purpose. By Spring 2021 first data about re-infections became available raising the question on how well
the population is currently protected. Since, the question about impact of the immunization level of Austria
are highly important, the possibility for re-infections could not be neglected anymore.

Model. Different scenarios were calculated to estimate the level and the future level of immunisation in Autria
(see [17,43]). The results are monthy reevaluated and published on http://www.dexhelpp.at/en/immunization_level.

Data. The model was fitted to official data for re-infections (Epidemiologisches Meldesystem by AGES [2]).

References

[1] Apache commons rng homepage. https://commons.apache.org/proper/commons-rng/. Accessed: 2020-
04-17.

[2] Covid-19 information page by ages. https://www.ages.at/en/wissen-aktuell/publikationen/
epidemiologische-parameter-des-covid19-ausbruchs-oesterreich-2020/. Accessed: 2020-04-08.

[3] dwh gmbh news entry for the abt simulation framework. http://www.dwh.at/en/news/
the-power-of-the-abt-simulation-framework/. Accessed: 2020-04-17.

[4] Geo- and TopoJSON files of municipalities, districts and states in Austria by Flooh Perlot. Accessed:
2019-05-12.

[5] Dillon C. Adam, Peng Wu, Jessica Y. Wong, Eric H. Y. Lau, Tim K. Tsang, Simon Cauchemez, Gabriel M.
Leung, and Benjamin J. Cowling. Clustering and superspreading potential of sars-cov-2 infections in hong
kong. Nature Medicine, 26(11):1714–1719, Nov 2020.

[6] Hester Allen, Elise Tessier, Charlie Turner, Charlotte Anderson, Paula Blomquist, David Simons, Alessan-
dra Lochen, Christopher I Jarvis, Natalie Groves, Fernando Capelastegui, et al. Comparative transmission
of sars-cov-2 omicron (b. 1.1. 529) and delta (b. 1.617. 2) variants and the impact of vaccination: national
cohort study, england. MedRxiv, 2022.

[7] Statistik Austria. Arbeitsstätten (ab az 2011).

[8] Statistik Austria. Betreuungs- und Pflegedienste.

[9] Statistik Austria. Tourismus in zahlen.

[10] Statistik Austria. Bevölkerungsstand und Bevölkerungsveränderung, 2019.

[11] Statistik Austria. Bildung - Bundesanstalt Statistik Österreich, 2019.

[12] Wien Statistik Austria. Arbeitsstättenzählung 2001. Verlag Österreich, 2004.

19

http://www.dexhelpp.at/en/immunization_level
https://commons.apache.org/proper/commons-rng/
https://www.ages.at/en/wissen-aktuell/publikationen/epidemiologische-parameter-des-covid19-ausbruchs-oesterreich-2020/
https://www.ages.at/en/wissen-aktuell/publikationen/epidemiologische-parameter-des-covid19-ausbruchs-oesterreich-2020/
http://www.dwh.at/en/news/the-power-of-the-abt-simulation-framework/
http://www.dwh.at/en/news/the-power-of-the-abt-simulation-framework/


[13] Victoria A Avanzato, M Jeremiah Matson, Stephanie N Seifert, Rhys Pryce, Brandi N Williamson, Sarah L
Anzick, Kent Barbian, Seth D Judson, Elizabeth R Fischer, Craig Martens, et al. Case study: prolonged
infectious sars-cov-2 shedding from an asymptomatic immunocompromised individual with cancer. Cell,
183(7):1901–1912, 2020.

[14] Fabio Bellifemine, Agostino Poggi, and Giovanni Rimassa. Jade–a fipa-compliant agent framework. In
Proceedings of PAAM, volume 99, page 33. London, 1999.

[15] Martin Bicher. Classification of Microscopic Models with Respect to Aggregated System Behaviour. Dis-
sertation, TU Wien, Vienna, Austria, November 2017.

[16] Martin Bicher, Claire Rippinger, and Niki Popper. Time dynamics of the spread of virus mutants with
increased infectiousness in austria. Ifac-papersonline, 55(20):445–450, 2022.

[17] Martin Bicher, Claire Rippinger, Günter Schneckenreither, Nadine Weibrecht, Christoph Urach, Melanie
Zechmeister, Dominik Brunmeir, Wolfgang Huf, and Niki Popper. Model based estimation of the sars-cov-
2 immunization level in austria and consequences for herd immunity effects. Scientific Reports, 12(1):1–15,
2022.

[18] Martin Bicher, Claire Rippinger, Christoph Urach, Dominik Brunmeir, Uwe Siebert, and Niki Popper.
Evaluation of contact-tracing policies against the spread of sars-cov-2 in austria: An agent-based simula-
tion. Medical Decision Making, 41(8):1017–1032, 2021. PMID: 34027734.

[19] Martin Bicher, Claire Rippinger, Melanie Zechmeister, Beate Jahn, Gaby Sroczynski, Nikolai Mühlberger,
Julia Santamaria-Navarro, Christoph Urach, Dominik Brunmeir, Uwe Siebert, et al. An iterative algorithm
for optimizing covid-19 vaccination strategies considering unknown supply. Plos one, 17(5):e0265957, 2022.

[20] Martin Bicher, Christoph Urach, and Niki Popper. GEPOC ABM: A Generic Agent-Based Population
Model for Austria. In Proceedings of the 2018 Winter Simulation Conference, pages 2656–2667, Gothen-
burg, Sweden, 2018. IEEE.

[21] Martin Bicher, Matthias Wastian, Dominik Brunmeir, Matthias Rößler, and Niki Popper. Review on
Monte Carlo Simulation Stopping Rules: How Many Samples Are Really Enough? In Proceedings of the
10th EUROSIM Congress on Modelling and Simulation, Logrono, Spain, July 2019. In Print.

[22] Andrew William Byrne, David McEvoy, Aine B Collins, Kevin Hunt, Miriam Casey, Ann Barber, Francis
Butler, John Griffin, Elizabeth A Lane, Conor McAloon, Kirsty O’Brien, Patrick Wall, Kieran A Walsh,
and Simon J More. Inferred duration of infectious period of sars-cov-2: rapid scoping review and analysis
of available evidence for asymptomatic and symptomatic covid-19 cases. BMJ Open, 10(8), 2020.

[23] Muge Cevik, Matthew Tate, Ollie Lloyd, Alberto Enrico Maraolo, Jenna Schafers, and Antonia Ho. Sars-
cov-2, sars-cov, and mers-cov viral load dynamics, duration of viral shedding, and infectiousness: a sys-
tematic review and meta-analysis. The Lancet Microbe, 2(1):e13–e22, Jan 2021.

[24] Talib Dbouk and Dimitris Drikakis. Fluid dynamics and epidemiology: Seasonality and transmission
dynamics. Physics of Fluids, 33(2):021901, 2021.

[25] Rebecca Earnest, Rockib Uddin, Nicholas Matluk, Nicholas Renzette, Sarah E Turbett, Katherine J
Siddle, Christine Loreth, Gordon Adams, Christopher H Tomkins-Tinch, Mary E Petrone, et al. Compar-
ative transmissibility of sars-cov-2 variants delta and alpha in new england, usa. Cell Reports Medicine,
3(4):100583, 2022.

[26] Care and Consumer Protection Federal Ministry of Social Affairs, Health. Datenplattfrom COVID-19,
September 2020.

20



[27] Aneta Jadwiga Florczyk, Stefano Ferri, Vasileios Syrris, Thomas Kemper, Matina Halkia, Pierre Soille,
and Martino Pesaresi. A new European settlement map from optical remotely sensed data. IEEE Journal
of Selected Topics in Applied Earth Observations and Remote Sensing, 9(5):1978–1992, 2015. Publisher:
IEEE.

[28] Aneta Jadwiga Florczyk, Stefano Ferri, Vasileios Syrris, Thomas Kemper, Matina Halkia, Pierre Soille,
and Martino Pesaresi. A new european settlement map from optical remotely sensed data. IEEE Journal
of Selected Topics in Applied Earth Observations and Remote Sensing, 9(5):1978–1992, 2016.

[29] Ilya Grigoryev. AnyLogic 6 in three days: a quick course in simulation modeling. AnyLogic North America,
[Hampton, NJ], 2012.

[30] Volker Grimm, Uta Berger, Finn Bastiansen, Sigrunn Eliassen, Vincent Ginot, Jarl Giske, John Goss-
Custard, Tamara Grand, Simone K. Heinz, Geir Huse, Andreas Huth, Jane U. Jepsen, Christian Jørgensen,
Wolf M. Mooij, Birgit Müller, Guy Pe’er, Cyril Piou, Steven F. Railsback, Andrew M. Robbins, Martha M.
Robbins, Eva Rossmanith, Nadja Rüger, Espen Strand, Sami Souissi, Richard A. Stillman, Rune Vabø,
Ute Visser, and Donald L. DeAngelis. A standard protocol for describing individual-based and agent-based
models. Ecological Modelling, 198(1):115–126, 2006.

[31] Volker Grimm, Uta Berger, Donald L. DeAngelis, J. Gary Polhill, Jarl Giske, and Steven F. Railsback.
The ODD protocol: A review and first update. Ecological Modelling, 221(23):2760–2768, 2010.

[32] Xi He, Eric HY Lau, Peng Wu, Xilong Deng, Jian Wang, Xinxin Hao, Yiu Chung Lau, Jessica Y Wong,
Yujuan Guan, Xinghua Tan, et al. Temporal dynamics in viral shedding and transmissibility of covid-19.
Nature medicine, 26(5):672–675, 2020.

[33] Beate Jahn, Gaby Sroczynski, Martin Bicher, Claire Rippinger, Nikolai Mühlberger, Júlia Santamaria,
Christoph Urach, Michael Schomaker, Igor Stojkov, Daniela Schmid, Günter Weiss, Ursula Wiedermann,
Monika Redlberger-Fritz, Christiane Druml, Mirjam Kretzschmar, Maria Paulke-Korinek, Herwig Os-
termann, Caroline Czasch, Gottfried Endel, Wolfgang Bock, Nikolas Popper, and Uwe Siebert. Targeted
covid-19 vaccination (tav-covid) considering limited vaccination capacities—an agent-based modeling eval-
uation. Vaccines, 9(5), 2021.

[34] Juan Ignacio Latorre Jimenez. EUROSIM 2019 Abstract Volume. In EUROSIM 2019 Abstract Volume.
ARGESIM, 2019.

[35] Shruti Khare, Céline Gurry, Lucas Freitas, Mark B Schultz, Gunter Bach, Amadou Diallo, Nancy Akite,
Joses Ho, Raphael TC Lee, Winston Yeo, et al. Gisaid’s role in pandemic response. China CDC Weekly,
3(49):1049, 2021.

[36] Stephen A Lauer, Kyra H Grantz, Qifang Bi, Forrest K Jones, Qulu Zheng, Hannah R Meredith, Andrew S
Azman, Nicholas G Reich, and Justin Lessler. The incubation period of coronavirus disease 2019 (COVID-
19) from publicly reported confirmed cases: estimation and application. Annals of internal medicine, 2020.

[37] Shujuan Ma, Jiayue Zhang, Minyan Zeng, Qingping Yun, Wei Guo, Yixiang Zheng, Shi Zhao, Maggie H
Wang, and Zuyao Yang. Epidemiological parameters of coronavirus disease 2019: a pooled analysis of
publicly reported individual data of 1155 cases from seven countries. Medrxiv, 2020.

[38] David Masad and Jacqueline Kazil. Mesa: an agent-based modeling framework. In 14th PYTHON in
Science Conference, pages 53–60, 2015.

[39] Makoto Matsumoto and Takuji Nishimura. Mersenne twister: a 623-dimensionally equidistributed uniform
pseudo-random number generator. ACM Transactions on Modeling and Computer Simulation (TOMACS),
8(1):3–30, 1998.

21



[40] Joël Mossong, Niel Hens, Mark Jit, Philippe Beutels, Kari Auranen, Rafael Mikolajczyk, Marco Massari,
Stefania Salmaso, Gianpaolo Scalia Tomba, Jacco Wallinga, and others. POLYMOD social contact data.
2017.

[41] Muaz A. K. Niazi, Amir Hussain, and Mario Kolberg. Verification and Validation of Agent Based Simu-
lations using the VOMAS (Virtual Overlay Multi-agent System) Approach. volume 494. CEUR-WS, July
2009.

[42] Michael J North, Thomas R Howe, Nick T Collier, and Jerry R Vos. The repast simphony runtime sys-
tem. In Proceedings of the agent 2005 conference on generative social processes, models, and mechanisms,
volume 10, pages 13–15. Citeseer, 2005.

[43] Claire Rippinger, Martin Bicher, Christoph Urach, Dominik Brunmeir, NWeibrecht, G Zauner, G Sroczyn-
ski, B Jahn, N Mühlberger, U Siebert, et al. Evaluation of undetected cases during the covid-19 epidemic
in austria. BMC Infectious Diseases, 21(1):1–11, 2021.

[44] S. Tisue and U. Wilensky. NetLogo: A simple environment for modelling complexity. pages 16–21, 2004.

[45] Yu Wu, Liangyu Kang, Zirui Guo, Jue Liu, Min Liu, and Wannian Liang. Incubation period of covid-
19 caused by unique sars-cov-2 strains: A systematic review and meta-analysis. JAMA Network Open,
5(8):e2228008–e2228008, 2022.

22



Table 4: List of contact specific parameters (1/2, status October 13, 2022). Note that all parameter values are
specified for the standard model without policies. The Γ-distribution is given as Γ(k, θ).
parameter description value source
contactivity
(hence-
forth ct)

individual parameter to scale the av-
erage number of contacts per day, to
ensure the skewness of the contact-
network

X ∼ Γ(0.6, 1/0.6) calibrated to match a net-
work dispersion factor of
0.43 as published in [5]

leisure
time con-
tacts per
day

number of leisure time transmission-
relevant contacts of an agent per day

X ∼ Poi(ct · 6.11) based on the results of the
POLYMOD study [40]

workplace
contacts
per day

number of transmission-relevant con-
tacts at work (if assigned) of an agent
per day. Same values used for care-
home contacts.

X ∼ Poi(ct · 5.28) based on the results of the
POLYMOD study [40]

school
contacts
per day

number of transmission-relevant con-
tacts at school (if assigned) of an agent
per day

X ∼ Poi(ct · 4.64) based on the results of the
POLYMOD study [40]

contact in
other class
probability

probability of a pupil to draw a contact
partner from the whole school and not
only its own class

10% Estimate

household
sizes and
structure

distribution of household sizes and
structure

see source distribution and structure
from freely accessible ta-
bles for household statis-
tics from the Austrian Na-
tional Statistics Institute
[10]

school
class sizes

Capacity of school classes 20 for schools with pupils
below 14, 23 otherwise

gathered from a publica-
tion of the Austrian Na-
tional Statistics Institute
[11]

school
sizes

The actual number of schools and
pupils were gathered to calculate the
average number of classes per school.
Based on this average, the class-
capacities of schools in the simulation
are sampled with triangular distribu-
tion.

X ∼ Tri(µ/3, µ, 5µ/3),
with µ = pupils

schools

counts gathered from a
publication of the Aus-
trian National Statistics
Institute [11]. Bounds
for triangular distributed
were estimated.

workplace
sizes

discrete distribution of workplace sizes see source gathered from a survey
[12] by the Austrian Na-
tional Statistics Institute

workplace
branches

Industrial branch parameter of the
workplace. We distinguish 21 branches
according to the top level code of the
ÖNACE 2008 norm. Two additional
branches, care-home workers (Q.86)
and teachers (P.85.2-4), were added for
obvious reasons

see source Austrian National Statis-
tics Institute (see [7] for
federalstate data, data on
district level behind pay-
wall)

care-home
units

The actual number of care-homes w
staff and residents were gathered to
calculate the number of care-home
units given a maximum capacity of 20
residents

see source counts gathered from
freely accessible ta-
bles from the Austrian
National Statistics Insti-
tute [8]
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Table 5: List of contact specific parameters (2/2, status October 13, 2022). Note that all parameter values are
specified for the standard model without policies.
parameter description value source
regional sam-
pling of leisure
time contacts

leisure time contact partners are sam-
pled based on origin-destination matri-
ces on municipality level

Average fraction of all
stays of persons from mu-
nicipality X within mu-
nicipality Y for all munic-
ipalities X and Y of Aus-
tria

gathered from mobile
phone data evaluated
for January 2020

regional dis-
tribution of
schools, work-
places and
care-homes

schools, workplaces and care-homes are
created based on known information
about workers, teachers and care-home
employees per district. The actual co-
ordinate in the district is sampled using
the sampling algorithm of the underly-
ing population model

see Table 3 and work-
place branches in Ta-
ble 4

regional as-
signment of
schools, work-
places and
care-homes

inhabitants of schools, workplaces and
care-homes are assigned based on
origin-destination matrices on district
level

Average fraction of all
stays of persons from dis-
trict X within district Y
for all district X and Y of
Austria

gathered from mobile
phone data evaluated
for January 2020
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Table 6: List of virus/disease specific parameters (probabilities,status October 13, 2022).
parameter description value source
βstr Strain dependent factor to

determine the probability
that a contact between a
susceptible and an infected
agent leads to a transmis-
sion.

base 0.093
Alpha 0.130
Delta 0.205
BA.1 0.205
BA.2 0.215
BA.5 0.215

Value for base variant is cali-
brated (see Section 1.3.4). Val-
ues for other variants are taken
from literature ( [25], [6]) and fine
tuned using calibration.

βloc Strain dependent factor to
determine the probability
that a contact between a
susceptible and an infected
agent leads to a transmis-
sion. Changed by policy
events.

Base setting: Same
for all regions, 1
in all locations ex-
cept households, 5
in households

The value for households was ad-
justed to fit the measured house-
hold attack rate.

βcl Climate dependent factor
to determine the probabil-
ity that a contact between a
susceptible and an infected
agent leads to a transmis-
sion.

see source Concentration rate value cal-
culated according to [24] for
Austrian Weather data (ZAMG,
https://www.zamg.ac.at/cms/de/aktuell).

βdyn Models the virus load in
an infectious agent as a
severity-dependent function
of time, that scales the in-
fection probability in case of
a contact

see Figure 2 merged information about the
shedding duration from [23] and
qualitative information about the
shape of the curve from [32]

βex Exogenous factor to deter-
mine the probability that a
contact between a suscep-
tible and an infected agent
leads to a transmission.

default 1 free parameter for calibration

detection
probability

probability of an infected
person to get detected by
a test. Changed in model
timeline.

initial values
(spring 2020): [ 3,
9, 22, 20, 24, 28, 20,
21, 33, 58 ]% for 10
year age-classes

Regularly updated with the
methods in [43] using screening-
and sero-prevalence studies.
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Table 7: Immunisation and immunity-waning probabilities and distributions (status October 13, 2022)
probabilitiy that event leads to immunity

ca
us
e /

tar
ge
t

ot
he
rs

A
lp
ha

D
el
ta

O
m
ic
ro
n
B
A
.1

O
m
ic
ro
n
B
A
.2

O
m
ic
ro
n
B
A
.4
/5

others 1.00(1) 1.00(1) 1.00(2) 1.00(3) 1.00(3) 1.00(3)

Alpha 1.00(1) 1.00(1) 1.00(2) 1.00(3) 1.00(3) 1.00(3)

Delta 1.00(1) 1.00(1) 1.00(2) 1.00(3) 1.00(3) 1.00(3)

Omicron BA.1 1.00(1) 1.00(1) 1.00(2) 1.00(4) 1.00(5) 1.00(3)

Omicron BA.2 1.00(1) 1.00(1) 1.00(2) 1.00(3) 1.00(4) 1.00(3)

Omicron BA.4/5 1.00(1) 1.00(1) 1.00(2) 1.00(3) 1.00(3) 1.00(4)

1 dose 0.60(1) 0.60(1) 0.60(2) 0.36(6) 0.25(7) 0.25(7)

2 doses 0.89(1) 0.89(1) 0.89(2) 0.51(6) 0.36(7) 0.36(7)

3 doses 1.00(1) 1.00(1) 1.00(8) 0.82(6) 0.57(7) 0.57(7)

4 doses 1.00(9) 1.00(9) 1.00(9) 0.82(9) 0.57(7) 0.57(7)

distribution of immunity duration in days (values stand for the scale parameter of a Weibull
distribution with shape 1.5)

ca
us
e /

tar
ge
t

ot
he
rs

A
lp
ha

D
el
ta

O
m
ic
ro
n
B
A
.1

O
m
ic
ro
n
B
A
.2

O
m
ic
ro
n
B
A
.4
/5

others 819(1) 819(1) 819(2) 111(3) 111(3) 111(3)

Alpha 819(1) 819(1) 819(2) 111(3) 111(3) 111(3)

Delta 819(1) 819(1) 819(2) 111(3) 111(3) 111(3)

Omicron BA.1 819(1) 819(1) 819(2) 400(4) 111(5) 111(3)

Omicron BA.2 819(1) 819(1) 819(2) 111(3) 400(4) 111(3)

Omicron BA.4/5 819(1) 819(1) 819(2) 111(3) 111(3) 400(4)

1 dose 292(1) 292(1) 292(2) 57(6) 57(7) 57(7)

2 doses 224(1) 224(1) 224(2) 186(6) 186(7) 186(7)

3 doses 220(1) 220(1) 220(8) 149(6) 149(7) 149(7)

4 doses 220(9) 220(9) 220(9) 149(9) 149(7) 149(7)

sources
(1) Assumed equal effectiveness as against Delta
(2) Effectiveness calculated from all EMS-registered cases/reinfections between Oct 1st to
Nov 1st,2021
(3) Assuming equal cross immunity between all Omicron subtypes (original data for BA.1
to BA.2)
(4) Calibrated using the agent-based epidemics model.
(5) Effectiveness of recovery calculated from registered cases/reinfections between Feb 10
and Feb 20,2022
(6) Tseng, Hung Fu, Bradley K Ackerson, Yi Luo, Lina S Sy, Carla Talarico, Yun Tian,
Katia Bruxvoort, et al.2022. "Effectiveness of MRNA-1273 against SARS-CoV-2 Omicron
and Delta Variants."MedRxiv
(7) Vaccines estimated 30 percent less effective against BA.2 and BA.4/5 compared to BA.1
(8) SARS-CoV-2 variants of concern and variants under investigation in England, Technical
briefing 31, UK Health Security Agency, 2021-12-10
(9) Estimated to be equally effective as 3rd dose
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Table 8: List of virus/disease specific parameters (durations (in days), status ).
parameter description value source
reaction
duration

time between symptom
on-set and testing of the
agent which furthermore
leads to its confirmation
and home isolation. De-
pends on date (correlates
with test availability).

2020/02-2020/05:
Weib(1.33, 5.67)

2020/06-2021/08:
Weib(1.30, 2.90)

2021/09-2021/10:
Weib(1.43, 2.59)

from 2021/11:
Weib(1.53, 1.99)

processed from officially
reported data (Epidemiol-
ogisches Meldesystem [26])

incubation
time

time between infection
and symptom on-set. De-
pends on the virus vari-
ant.

base Weib(2.06, 6.10)
Alpha Weib(2.06, 5.98)
Delta Weib(2.06, 5.27)
BA.1 Weib(2.06, 4.09)
BA.2 Weib(2.06, 4.09)
BA.5 Weib(2.06, 4.09)

Base Weibull distribution
fitted to [36]. Scale of
other variants adjusted to
[45].

pre-
symptomatic
time

time between start of in-
fectiousness period and
symptom onset. Equiv-
alent with the difference
between incubation and
latency time. Depends on
the virus variant.

base Weib(3.77, 2.13)
Alpha Weib(3.77, 2.09)
Delta Weib(3.77, 1.84)
BA.1 Weib(3.77, 1.43)
BA.2 Weib(3.77, 1.43)
BA.5 Weib(3.77, 1.43)

Base Weibull distribution
fitted to data from [13].
Distributions for variants
scaled with the same fac-
tors as the incubation
time.

recovery
time un-
confirmed

time between end of la-
tency duration and re-
covery for unconfirmed
persons (usually asymp-
tomatic). Depends on the
virus variant.

Weib(1.51, 8.04) based on the fitted distri-
bution for [37] in the sys-
tematic review [22]. Will
potentially be made vari-
ant specific in future ver-
sions.

recovery
time con-
firmed

time between symp-
tom onset and recovery
for confirmed persons
(mostly mild symp-
tomatic).

Weib(1.51, 14.86) based on the mean value
(13.4) of the collected pa-
pers in [22]. Assumed
same shape as undetected
duration. Will potentially
be made variant specific in
future versions.
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Table 9: List of parameter specific for vaccinations, imports and screenings. Since parameters change rapidly
in time we cannot state their values.

parameter description source
vaccinations
per day

Number, type and target
group of daily vaccinated
person-agents

directly taken from our intreface to the
Austrian vaccination data (E-Impfpass,
https://www.elga.gv.at/e-impfpass/e-
impfpass/)

screenings per
day

Number and age-class of
daily screened person-
agents.

Estimated from Austrian reports on issued tests
per federalstate. The highest value is around
100 000 tests in Vienna in 2021 per day. Up-
dated in timeline (see Table 10).

imports per
day

Number of daily imported
cases per federalstate.

Merged information from reports of tourist
overnight stays ( [9]) with Austrian Cluster
Data from AGES [2]. Updated in timeline (see
Table 10).

imported vari-
ants

Split of imported virus
strains.

Calibrated according to [35]. Until Sep. 2022
we consider the variants Alpha, Delta, Omicron
BA.1, BA.2 and BA.5. Parameter updated in
timeline (see Table 10).
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Table 10: List of event-timeline elements that can pose for the (main-version of the) model’s input including
their effect and, if available, options for the event parametrisation.

event description parameters
leisure-time con-
tact number re-
duction event

Based on an age-class (child, adult, re-
tired) and/or region (municipality, dis-
tricts, federalstates) dependent proba-
bility, an agent may “reject” a leisure-
time contact with a different agent. As
the rejection happens symmetrically,
the probabilities multiply.

affected region; age-class-
dependent fraction by which
daily leisure-time contacts are
reduced

hygiene aware-
ness event

Depicts changes in the hygiene aware-
ness of the population by changing βloc

value per location

change symp-
tomatic test
system event

Changes the detection rate and/or the
duration between symptom onset and
test.

percentage for detection for 10-
year age classes; new scale pa-
rameter for the Weibull distribu-
tion for the reaction time (see
also Table 8)

change screen-
ing test system
event

Changes the number and target groups
for the daily screening tests.

Number of screened persons per
day per age class

change imports
event

Changes the number of daily imported
cases and/or their virus strain distri-
bution.

Number of imported cases per
federalstate; List of strains to
draw from

location clos-
ing/opening
event

Fraction of locations of a certain type
are closed/opened in this policy.

affected location type; fraction of
locations of this type that remain
open / are opened

start/end lo-
cation tracing
event

Starts/ends with location tracing mea-
sures. I.e. all members of a newly con-
firmed agent’s location are put under
preventive isolation for a certain period
of time.

affected location type; length of
preventive quarantine length

start/end con-
tact tracing
event

Starts/ends with contact tracing mea-
sures. I.e. recorded contacts of a newly
confirmed agent are put under preven-
tive isolation.

fraction of agents capable of
recording contacts; length of pre-
ventive quarantine length

vaccination
round event

Distributes a number of given vac-
cine doses of a certain type to capable
model agents in addition to the daily
standard vaccinations

number of doses; type of vaccine
(e.g. first, second,... dose); target
groups; time delay

change βex
event

Changes βex. Usually only used by cal-
ibration routines.

New value of βex per federalstate.
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