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Abstract

To simulate solely the spread of SARS-Cov-2 a variety of methods exists, of which many are probably
more suited for prognoses than agent-based models. Yet, in order to to evaluate the impact of policies like
tracing, individual-based models are required.

We developed an agent based simulation model to reproduce the current outbreak of COVID-19 in
Austria that allows for exploratory analysis of tracing in different characteristics. Aim of this work is
the presentation of this model and consequent evaluation and comparison of different policies: Can we
achieve containment solely by successful tracing or do we need additional policies? How large is the impact
of tracing, keeping in mind that a possibly large number of disease progressions are asymptomatic, yet
infectious?
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1 Model Definition

We will explain our agent-based COVID-19 model based on the ODD (Overview, Design Concepts, Details)
protocol by Volker Grimm et.al. [17,18].

1.1 Overview
The modelling of the spread of the disease is based on the interplay of four modules.

1. Population. Altogether the agent-based COVID-19 model is based on the Generic Population Concept
(GEPOC, see [13]), a generic stochastic agent-based population model of Austria, that validly depicts the
current demographic as well as regional structure of the population on a microscopic level. The flexibility
of this population model makes it possible to modify and extend it by almost arbitrary modules for
simulation of population-focused research problems.

2. Contacts. In order to develop a basis for infectious contacts, we modified and adapted a contact model
previously used for simulation of influenza spread. This model uses a distinction of contacts in different
locations (households, schools, workplaces, leisure time) and is based on the POLYMOD study [24], a
large survey for tracking social contact behaviour relevant to the spread of infectious diseases.

3. Disease. We implemented a module for the course of the disease that depicts the current pathway of
COVID-19 patients starting from infection to recovery or death and linked it with the prior two modules.

4. Policies. Finally, we added a module for implementation of interventions, ranging from contact-reduction
policies, hygienic measures and, in particular, contact tracing. This module is implemented in form of a
timeline of events.

1.1.1 Purpose

The agent-based COVID-19 model aims to give ideas about the potential impact of certain policies and their
combination on the spread of the disease, thus helping decision makers to correctly choose between possible
policies by comparing the model outcomes with other important factors such as socioeconomic ones. In order
to fulfil this target, it is relevant that the agent-based COVID-19 model validly depicts the current and near
future distribution and state of disease progression of infected people and their forecasts. Yet this is not the
key feature of this model.

In the following overview of the model, we will not state any parameter values to focus on the model concept.
A full collection of model parameters including values, sources and justifications is found in the Appendix
(Section 1.3.3).

1.1.2 Entities and State Variables

Each person-agent is a model for one inhabitant of the observed country/region. We describe state variables
of a person-agent sorted by the corresponding module.

Population. Each person-agent contains the population specific state variables sex, date of birth (= age) and
location. The latter defines the person-agent’s residence in form of latitude and longitude and uniquely maps
to the agent’s municipality, district and federal state.

Contacts. The person-agent features a couple of contact network specific properties. These include a household
and might include a workplace or a school. We summarise these as so-called locations which stand for network
nodes via which the person-agent has contacts with other agents. Assignment of person-agents to locations is



based on distance of the agent’s residence to the position of the location. Each day, an agent has a certain
number of contacts within each of the locations, which essentially leads to spread of the disease. To model
contacts apart from these places, every person-agent has an additional amount of leisure time contacts, which
are sampled randomly based on a spatially-dependent distribution. The contact network is schematically
displayed in Figure 1.
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Figure 1: Contact network of agents in the agent-based COVID-19 model. Regular contacts between agents
occur via locations (schools, workplaces and households, while random leisure time contacts extend the standard
contact network.

Disease. In order to model the spread of the disease each person-agent has a couple of health states that display
the current status of the agent. The most important ones are infected, infectious, symptoms, hospitalised,
critical, confirmed, severe, asymptomatic, home-quarantined and recovered. These states can either be true or
false, and multiple of them can be true at a time. They stand for certain points within the patient pathway of
an infected person and enable or disable, respectively, certain person-agent actions. More on the influence of
these state variables and how they change is described in Section 1.1.4.

Policies. Policies apply either to locations or to person-agent-behaviour directly and require additional agent
properties. All locations except for households are defined open or closed which marks whether this place
is available for having contacts. For person-agents the variable preventive quarantine is introduced to mark
agents isolated due to tracing.

For the sake of simplicity of speech we furthermore address mentioned parameters as attributes for the corre-
sponding agents. I.e. an agent with infectious set to true will be denoted as “infectious agent”.

1.1.3 Scales

Unlike other agent-based models it is not possible to validly run the model with a smaller number of agents
(e.g. one agent represents 10 or 100 persons in reality) as certain contact-network parameters do not scale this
way (average school size,...). Consequently, one simulation run always uses agents according to the size and
structure of the full population.



1.1.4 Process Overview and Scheduling

Like the underlying population model, the agent-based COVID-19 model can be interpreted as a hybrid between
a time-discrete and a time-continuous (i.e. event-updated) agent-based model:

The overall simulation updates itself in daily time steps, wherein each step is split into three phases. In the
first phase each agent is called once to plan what it aims to do in the course of this time step. In the second
phase, each agent is, again, called once to execute all planned actions for this time step in the defined order.
In the third step, a recorder-agent keeps track of all aggregated state variables.

On the microscopic scope, each person-agent is equipped with its own small discrete event simulator. In the
mentioned planning phase, each agent schedules certain events for the future which may, but not necessarily
must, be scheduled within the current global time step. In the second phase, the agent executes all events that
are scheduled for the currently observed time interval, but leaves all events that exceed this scope untouched.

This strategy comes with the following benefits:

e In contrast to solely event-based ABMs, the event queue is distributed among all agents which massively
increases the speed for sorting (a solely event-based ABM with millions of complex agents would not be
executable is feasible time).

e Moreover, in contrast to solely event-based ABMs, usage of daily transition probabilities/rates instead of
transition times is possible as well.

e In contrast to solely time-discrete ABMs, agents can operate beyond the scope of time steps and sample
continuous time-intervals for their state-transitions.

We shortly describe all actions that are scheduled and executed by one person-agent within one time step
sorted by the specified module.

Population. As briefly described in [13|, agents trigger birth and death events always via time- and age-
dependent probabilities that apply for the observed time step (i.e. the observed day). If one of these events
triggers, the agent samples a random time instant within the current time step and schedules the event. Note
that in contrast to the basic population model, immigration and emigration events are disabled in the agent-
based COVID-19 model due to closed borders in reality.

Contacts. Also contact specific events are scheduled and executed within the scope of only one time step: First
of all, the agent schedules a contact event with every other member of its household. Moreover, if such a
location is present in the contact network, a certain number of workplace or school contacts, respectively, are
scheduled and corresponding partners drawn randomly from the assigned location. Finally, a certain number of
leisure time contacts are sampled and partners are drawn based on an origin-destination matrix on municipality
resolution. The latter has been gathered from mobile data (see 2).

As mentioned, some states limit the agents’ capabilities of interaction. In specific, quarantined agents have no
random leisure time contacts and no contacts at work or school. Furthermore, hospitalised agents do not even
contact their household members.

Anyway, planned contacts are always scheduled for the beginning of the new time-step. Hence, interaction
between agents is actually limited to the discrete time steps of the simulation. This guarantees, that the states
of both involved agents do not differ between the time of the planning of the event and its execution.

Disease. First of all, it is important to mention that the model is not parametrized by a reproduction number
Ry or R.fs, but by a contact-specific probability for a transmission in case of a contact. Nevertheless, the
agent-based model provides the opportunity to generate estimates for Ry and R.sy by its original definition:
the average number of secondary infections of an infected agent. Hence, what comes as model input for many
traditional SIR models becomes a model output for the agent-based COVID-19 model.



In case of a contact, infectious agents spread the disease to susceptible agents with a certain infection probability
that triggers the start of the newly-infected agent’s patient-pathway. This pathway describes the different states
and stations an agent passes while suffering from the COVID-19 disease and can be interpreted as a sequence
of events of which each triggers the next one after a certain sampled duration.

We show this infection strategy in a state chart in Figure 2 and describe how to interpret this figure by explaining
the initial steps in the pathway in more detail: As soon as a person-agent becomes infected, its infected state is
set to true and a latency period is sampled according to a specific distribution. The corresponding “Infectious”
event is scheduled for the sampled time instant in the future. As soon as this “Infectious” event is executed,
the infectious parameter is set to true and a random number decides about whether the person will develop
symptoms or not. This point marks the first branch in the patient’s pathway and whether the “Symptoms
Onset” event or the “Unconfirmed Disease” Event is scheduled. The prior would be planned after a sampled
time span corresponding to the difference between latency and incubation time, the latter would be triggered
instantaneously. All other elements of the pathway follow analogously. The branches are evaluated with
age-class-dependent probabilities (see Section 1.3.3).

Finally, it is important to mention that the current model does not specifically consider deceased agents as this
is not within the scope of the model (see Section 1.1.1). Consequently, all agents recover from the disease and
are assumed to be immunized thereafter.

Policies. Every policy is modeled as a global event occurring before the planning phase of any of the simulation
time steps. Policies are timed-events that are fed into the model as an event-timeline (see Figure 3). The
elements of this timeline may include real policies like closure or opening of locations, start of tracing (for a full
list, see Table 5), but may also contain incidents that change the model behavior but are not directly related
to policies, such as raising hygiene awareness or distancing.
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Figure 3: Event-timeline as the input of the simulation model in contrast to standard model parameters.

1.2 Design Concept

1.2.1 Basic Principles.

Increasing the level of detail from a standard epidemiological model for simulation of disease waves to a model
that is capable of dealing with various different policies is a huge step with respect to model complexity. It
excludes the use of macroscopic strategies and requires modelling of a contact network and contact behavior.
Consequently a detailed demography, spatial components and stochasticity need to be introduced to the model
which come with a huge number of additional parameters and parameter values.

Hence, we were very careful that the agent-based model is designed as simple as possible yet tracking the most
important features for evaluation of certain policies. Hereby, many details within the pathway of an infected
person and, in particular, lots of details within the personal daily routine are simplified to avoid indeterminable
model parameters and unpredictable model dynamics.

1.2.2 Emergence.

In addition to the classic emergence of nonlinear epidemiological effects, analysis of the effects of interaction
between different measures is one of the key objectives of the model. For example, seemingly unconnected
policies like school closure and contact reduction for the 65+ might lead to unexpected effects when applied
simultaneously. More generally speaking, the model displays that the individual effects of applied policies do
not add up linearly.

1.2.3 Sensing.

Agents’ perception of reality is one of the key problems of modelling COVID-19 as no agent is actually aware
of its own disease and, more importantly, infectiousness until symptoms occur. Therefore, agent parameters
can be distinguished into two sets: the ones the agent is aware of (e.g. symptoms, hospitalised), and the ones
it is not (e.g. infected, infectious).

Interestingly, besides the individual perception of agents and the perception of an omniscient observer, there is
also a third level of perception included into the model: the perception of the general public. While an individual



agent knows about its symptoms, the public is not yet aware of this additional infected case, until the person-
agent has reacted on the disease, has had itself tested and eventually becomes confirmed. Consequently, the
levels of perception can be sorted with regards to their amount of knowledge:

omniscient observer > person-agent > general public.

1.2.4 Interaction.

Interaction between agents only occurs in form of contacts at locations or leisure time. The features pro-
vided by the underlying population model make it possible to investigate contacts on a very local level. As
described before, leisure time contacts are weighted by their regionality, but also school and workplace con-
tacts depict locality: Using specified latitude and longitude for locations, it is possible to assign person-agents
with distance-dependent probabilities (see Section 1.3.1). Consequently, interactions between agents follow a
spatially-continuous locally-biased contact network.

1.2.5 Stochasticity.

Basically all model processes, including the initialisation, contain sampling of random numbers. Therefore,
Monte Carlo simulation is applied, results of runs are averaged and also their variability is assessed (see Section
2.1).

1.2.6 Observation.

Inspired by [25], a recorder-agent takes care about tracking and aggregating the current status of the simulation.
At the end of each global time step, all person-agents report to the recorder-agent which furthermore keeps
track of all necessary aggregated model outputs. This includes for example confirmed active cases, confirmed
cumulative cases, hospitalised agents, asymptomatic agents, pre-symptomatic agents, recovered agents, agents
in a certain hospital, or average-number of contacts per infectious agent. If required, numbers can also be
tracked with respect to age, sex, regional level and/or location.

1.3 Details

Clearly, Section 1.1 could only outline the basic concepts of the model and left a lot of technical and modelling
details necessary for a reproducible model definition open. In particular, this refers to the highly non-trivial
initialisation process of the model. Hereby, two problems occur that require completely different approaches.
The first problem considers the generation of the person-agents, locations and hospitals in the first place. The
second problem deals with the initialisation of the status quo of the distribution of the disease states of the
agents for the specified initial date.

1.3.1 Initialisation of Person-agents, Locations and Hospitals.

A lot of problems that deal with the sampling of the initial population have already been solved in the
original GEPOC model [13]. In particular this refers to the delaunay-triangulation-based sampling method for
locations. We apply this method to merge information from the national statistics institute and the global
human settlement layer [15]. Consequently, besides initialisation of the disease states which is described in the
next section, only new methods for location- and hospital-generation had to be implemented.

Schools are initialised based on known distributions w.r.t. average school size and number of pupils in total. A
school-sampler iteratively generates schools with a random size/capacity (truncated normal distribution) until



the sum of all capacities matches the known number of pupils in reality. Each school is furthermore sampled
a position (latitude and longitude) analogous to the sampling for person-locations (see [13]). In a second step,
schools are “filled” with person agents. Hereby, model agents with age between 6 and 18 are assigned to a
school based on a locally biased distribution. This is done with probabilities pj,, pg, p} and p; for assigning
the school in the same municipality, district, federal-state and country as the agent’s residence. Clearly, the
number of model agents in this age group is larger than the number of known pupils. Consequently, we force
distribution of all 6 to 14 year old agents, and distribute as many 15 to 18 year old agents as possible. All
remaining 15 to 18 year old agents are considered to be working.

Workplaces! are initialised analogously to schools. A workplace-sampler iteratively generates workplaces with
size /capacity according to a discrete distribution (see Table 2). The sampler stops generating if the sum of all
capacities matches (a + b)(1 — «), whereas a denotes all model agents between 19 and 64, b denotes all agents
between 15 and 18 that have not been yet assigned a school, and a denotes the current unemployment rate.
Location sampling and “filling” works analogously to the school-sampler with different probabilities.

Hospitals are generated based on publicly available data. This includes capacities (beds, intensive-care units)
as well as their location (latitude and longitude).

1.3.2 Initialisation of the Disease State

The spread of SARS-CoV-2 displays probably better than any other system, that the most dangerous enemy
is the invisible one. While confirmed infected persons are detected and well known, they hardly contribute to
the spread of the disease — they are already isolated properly, and most infections occur even before the onset
of symptoms.

Consequently, it is not possible to simply “start” the simulation with a certain number of confirmed cases,
acquired for example from official internet sources. Valid values for pre-symptomatic (e.g. persons within
latency and incubation period) and asymptomatic persons need to be acquired as well — yet, this number is
hardly measurable in reality.

In order to solve this problem, a three stage concept, henceforth denoted as initialisation phase, was designed
to generate a feasible initial state for a certain time tg:

1. Initialise-Simulation. The agent-based COVID-19 model is set up with a small number of initially
infected agents. This number corresponds to an estimated count of initial infection clusters in the coun-
try, but actually hardly influences the outcome. Furthermore, the agent-based simulation is run and
interrupted by a state event, namely if the cumulative number of confirmed agents in the model is greater
or equal to a specific value C(t_1). Hereby, t_1 refers to a self chosen point in time and C(t_1) to the
reported number of positive tests in reality until ¢_;. Hereby ¢t_; must be chosen properly so that the
reported number of positive tests is large enough to be representative yet before implementation of any
policies.

As soon as the simulation is interrupted by the state-event, the timelines of simulation and reality are
synced: t_1 in reality becomes ¢_; in the simulation.

The initialise-simulation is continued, considering all policies that have been implemented in reality,
until, finally, to is reached. Properly calibrated by a calibration routine (see Section 1.3.4), the initialise-
simulation contains approximately the same cumulative number of confirmed agents as the corresponding
reported number in the real system.

The initialise-simulation is finished by exporting parts of the final state of the simulation. This refers
to all households that contain either infected or recovered agents which are finally written into a file.

I'Workplaces should not be confused with total companies. They rather represent the different teams where the members are
in regular contact with each other.



Hereby, an initial population is generated that contains not only a valid approximation of the confirmed
cases, but also a valid estimate for the unknown pre-symptomatic and asymptomatic persons, a correct
distribution of their future planned events and a correct household distribution as well.

2. Fine Tuning. Even with best calibration routines (see Section 1.3.4) it is not possible to perfectly match
the model output with the status quo in reality, in particular w.r.t. regional distribution. Therefore,
a bootstrapping algorithm was implemented that corrects the small differences between the initialise-
simulation output and the real data (confirmed cases, hospitalisation, intensive-care units and recoveries
per region) to make sure, that the initial state of the actual simulation matches the current state precisely.
This step can be omitted, if matching the current state precisely is not required.

3. Load Households. Finally, the actual simulation is initialised with the previously recorded and fine-
tuned agents from the initialise-simulation. To be precise, this process does not only include agents
themselves, but also the households these agents live in. Hereby, at least, the fundamental network
structure from the initialise-simulation can be maintained.

1.3.3 Parametrisation

With respect to parametrisation, we will distinguish between model input and model parameters.

Classical model parameters specify scalar or array-typed model variables that are initialised at the beginning
of the simulation and, if not changed by certain model events, keep their value for the entire simulation time.
Examples are the infection probability of the disease, the age-dependent death rate of the population, or the
distribution parameters of the recovery time.

In contrast to model parameters, the model input consists of an event-timeline that describes at which point
in time a certain incident changes the behaviour of the model. This incident usually refers to the introduction
of a policy, e.g. closure of schools or start of tracing, but may also refer to instantaneous changes of model
parameters which are related but cannot be directly attributed to policies, e.g. the increase of compliance
among the population to increase hygiene.

In the following, we state lists of used parameters and parameter-values including corresponding sources and/or
justifications. They are found in Tables 1 to 4. Table 5 states a list of possible event-timeline elements that
can pose as the model’s input.

Table 1: List of population specific parameters
parameter description value source

birthrates, deathrates,
initial population, re-
gional distribution

parameters used by the underlying
population model

see source

rates and population tables from
Austrian National Statistics In-
stitute [7]. Maps from the Global
Human Settlement Project [5,15]
and [4].



Table 2: List of contact specific parameters. Note that all parameter values are specified for the standard
model without policies. The I-distribution is given as T'(k, ).

parameter description value source

leisure time | number of leisure time transmission- | X ~ I'(6.11,1.0) based on the results of the
contacts  per | relevant contacts of an agent per day POLYMOD study [24]

day

workplace con-
tacts per day

number of transmission-relevant con-
tacts at work (if assigned) of an agent
per day

X ~T(5.28,1.0)

based on the results of the
POLYMOD study [24]

school contacts
per day

number of transmission-relevant con-
tacts at school (if assigned) of an agent
per day

X ~I(4.64,1.0)

based on the results of the
POLYMOD study [24]

household sizes
and structure

distribution of household sizes and
structure

see source

distribution and structure from
freely accessible tables for
household statistics from the
Austrian National Statistics
Institute [7]

school sizes

The actual number of schools and
pupils were gathered to calculate the

X ~ N(p, /1), with p =
pupils ond X > p/4 as.

counts gathered from a publi-
cation of the Austrian National

average size of schools for the model. schoots Statistics Institute [9]
Based on this average, sizes for the
simulation are sampled truncated nor-
mally.
workplace sizes | discrete distribution of workplace sizes | see source gathered from a survey [10] by
the Austrian National Statis-
tics Institute
unemploy-ment | fraction of adults who are not assigned | 10.4% according to Austrian defini-

rate

a workplace

tion (AMS) gathered from the
web-page of the city of Vienna

18]

regional dis- | leisure time contact partners are sam- | Average fraction of all | gathered from mobile phone
tribution of | pled based on origin-destination matri- | stays of persons from mu- | data evaluated for January
leisure time | ces on municipality level nicipality X within mu- | 2020
contacts nicipality Y for all munic-

ipalities X and Y of Aus-

tria
regional dis- | schools are assigned based on locally [pfn,pfl,p‘},pj] = | data from the Austrian Bureau
tribution of | biased distribution according to the re- | [0.66,0.15,0.13,0.06] of Statistics [7]
schools gional structure: municipality (p.,),

district(pq), federal-state (py) and any-
where (pg)

regional distri-
bution of work-
places

workplaces are assigned based on lo-
cally biased distribution according to
the regional structure: municipality
(pm), district(pgq), federal-state (py)
and anywhere (pg)

10

[P P > DY s PG|

per federalstate:
AT1:[0.26,0.21,0.15,0.38]
AT?2:[0.46,0.16,0.30,0.08]
AT3:[0.29, 0.20,0.22,0.29]
AT4:[0.35,0.24,0.34,0.07]
AT5:[0.46,0.21,0.25,0.08]
AT6:[0.42,0.23,0.27,0.08]
AT7:[0.41,0.30,0.25,0.04]
AT8:[0.37,0.35,0.26,0.02]
AT9:[0.01,0.04, 0.84,0.11]

according to commuting be-
haviour data from the Austrian
Bureau of Statistics (Pend-
lerinnen und Pendler, [7])




parameter

Table 3: List of disease
description

specific parameters (1/2).

value

source

infection probability

probability that a contact
between a susceptible and
an infected agent leads to
a transmission. Depend-
ing on the type of contact
(household, school, work,
leisure time) this parameter
is scaled by a factor

Qhousehold = 4.5 - 0.057 =
0.257,

Qschool =

0.057

Olworkplace =

Qleisure time —

calibrated based on the doubling
rates in Austria before introduc-
tion of policies (see Section 1.3.4).

incubation time

time between infection and
symptom on-set

scaled (8 distribution with
min(X) = 2[d], max(X) =
14[d], E(X) = 5.1[d]

based on [21]

latency time

time between infection and
infectivity

always incubation time mi-

nus 2[d]

estimates by the Robert Koch In-
stitute ( [6], Section 8)

reaction time

time between symptom on-
set and testing of the agent
which furthermore leads to
its confirmation and home
isolation

X ~ Weibull(4.29, 1.65)

based on [19]

hospitalisation delay

time between start of home
isolation and hospitalisa-
tion

X ~ Tri(0, 1,2)

expert opinions (hospital admin-
istrators)

ICU delay

time between start hospital-
isation and transfer to ICU

X ~ Tri(0, 1, 2)

expert opinions (hospital admin-
istrators)

11



Table 4: List of disease

specific parameters (2/2).

parameter description value source
recovery time home | time between symptom on- | X ~ Tri(6,11,16) based on expert opinions and cal-
quarantined set and recovery for symp- ibrated w.r.t. official recovery

tomatic persons in home
isolation

data

recovery time severe

time between symptom on-
set and recovery for symp-
tomatic persons in normal
hospital beds

X ~ Weibull(16.0,1.76)

Cox regression on reported data
by Austrian hospitals (Epidemi-
ologisches Meldesystem by AGES
[2])

recovery time critical

time between symptom on-
set and recovery for symp-
tomatic persons in ICU
beds

X ~ Weibull(27.5, 3.0)

Cox regression on reported data
by Austrian hospitals (Epidemi-
ologisches Meldesystem by AGES
2])

recovery time uncon-
firmed

time between symptom on-
set and recovery for un-
confirmed persons (usually
asymptomatic)

Tri(1,5,7)

based on expert opinions

probability
firmed

uncon-

probability of an infected
person to remain uncon-

firmed

[92.5, 78.5, 46.2, 50.9, 40.6,
30.8, 50.6, 48.5, 18.3, 0.0 |%
for 10 year age-classes

Age distribution is gathered by
comparison of Austria’s age pyra-
mid with the distribution of the
confirmed cases.  The overall
probability is calibrated to 50%
as stated by antibody tests in Ice-
land.

hospitalisation proba-
bility

age-dependent probability
that a symptomatic patient
requires hospitalisation

[1.0,2.6,2.7,7.1,10.3,26.7,
48.3, 61.8, 53.3 |% for 10
year age-classes

Distribution is based on compari-
son of the age distribution of con-
firmed cases with the age distri-
bution of hospitalised cases (Epi-
demiologisches Meldesystem by
AGES [2]). The overall probabil-
ity is calibrated to Austrian hos-
pital data.

icu probability probability that a hospi- | 15.4% calibrated for Austrian ICUs with
talised agent becomes criti- data from the ministry of internal
cal (needs an intensive care affairs
unit)

initialisation data current epidemiological | see source initial data dumps updated on

numbers for Austria for
initialisation (see Section
1.3.2)

regular basis via Epidemiologis-
ches Meldesystem by AGES |[2]

12



Table 5: List of possible event-timeline elements that can pose for the model’s input including their effect an,

if available, options for the event parametrisation.
event description parameters
leisure-time  contact | Based on an age-class (child, adult, re- | age-class-dependent
number reduction | tired) dependent probability, an agent | fraction by  which
event may “reject” a leisure-time contact | daily leisure-time

with a different agent. As the rejection
happens symmetrically, the probabili-
ties multiply.

contacts are reduced

location closing event

Fraction of locations of a certain type
are closed in this policy.

affected location type;
fraction of locations of
this type that remain
open / are opened

adapt hygiene event

Changes the infection probability for
contacts in a certain location

affected location type;
factor to scale the
original infection
probability with

start location tracing
event

Starts with location tracing measures.
Le. all members of a newly confirmed
agent’s location are put under preven-
tive isolation for a certain period of
time.

affected location type;
length of preventive
quarantine length

start contact tracing | Starts with contact tracing measures. | fraction of agents
event L.e. recorded contacts of a newly con- | capable of recording
firmed agent are put under preventive | contacts; length of
isolation. preventive quarantine

length

1.3.4 Calibration

Clearly, there is no valid data available for direct parametrisation of the infection probability in case of a direct
contact. First of all, this parameter is hardly measurable in reality and moreover strongly depends on the
definition of “contact”. Consequently, this parameter needs to be fitted in the course of a calibration loop.

The calibration experiment is set up as follows:

e We vary the parameter infection probability using a bisection algorithm.

e For each parameter value, the simulation, parametrised without any policies, is executed ten times (Monte
Carlo simulation) and the results are averaged.

e The average time-series for the cumulative confirmed cases is observed and cropped to the beginning
upswing of the epidemic curve, to be specific, all values between 200 and 3200. In this interval the
growth of the curve can be considered as exponential.

e The cropped time-series is compared with the corresponding time-series of real measured data in Austria,
specifically the confirmed numbers between March 10" and 20" 2020 (source EMS system, [2]).

e Both time-series are compared w.r.t. the average doubling time of the confirmed cases. The difference
between the doubling times is taken as the calibration error for the bisection algorithm.
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Note: As the sample standard deviation of each observable of the runs has been observed to be at most a fifth
of the sample mean, the iteration number of nine for the Monte Carlo simulation has been considered to be
sufficient for calibration purposes w.r.t. the ideas in [14,20].

2 Model Implementation

Simulation of agent-based models like the agent-based COVID-19 model is a huge challenge with respect to
computational performance. As the model cannot be scaled down, almost 9 Million interacting agents need to
be included into the model in order to simulate the spread of the disease in Austria.

These high demands exclude most of the available libraries and software for agent-based modelling including
AnyLogic [16], NetLogo [27], MESA [22], JADE [11] or Repast Simphony [26]. Most of these simulators cannot
be used as their generic features for creating live visual output generates too much overheads.

Consequently, we decided to use our own agent-based simulation environment ABT (Agent-Based template,
see [3]), developed in 2019 by dwh GmbH in cooperation with TU Wien. The environment is implemented in
JAVA and specifically designed for supporting reproducible simulation of large-scale agent-based systems.

The next section contains more technical details about the implementation.

2.1 Technical Implementation Details

The implementation of the agent-based COVID-19 model uses JAVA 11 and applies the UniformRandomPro-
vider random number generator (RNG) by Apache Commons [1]. This RNG implements a 64 bit version of
the Mersenne Twister [23| and exceeds the standard RNG of JAVA, a simple Linear Congruential Generator,
in both performance and quality.

The simulation itself is always executed in a Monte Carlo setting and several runs with different RNG seeds are
averaged. Due to the huge number of agents, a Law-of-Large-Numbers-effect can be observed (similar to [12]
Chapter 5.2), and the standard deviation of the model output is always comparably small. Consequently,
Monte Carlo replication numbers of 10 to 20 are usually enough to estimate the mean sufficiently well (we
apply the algorithms from [14, 20]).

3 Features and Limitations

Due to the highly flexible policy timeline, the model is capable of testing and combining lots of different policies
in different characteristics at different times. Hence, it can easily depict almost any specified policy announced
in reality, if estimates for the policy parameters are available.

The latter statement particularly refers to combination of policies: although the model correctly depicts the
epidemiological impact of the combination of policies, the social impact needs to be parametrised manually.
For instance, the causal relation between closed schools and intensified parent-children contacts needs to be
parametrised and is not given by the model dynamics.

Unfortunately, as the model cannot be scaled down, a huge number of agents leads to long computation times,
and the necessity of Monte Carlo simulation for flattening of stochastic results increases the time required to
get simulation output even further. Consequently, the simulation’s capabilities of dealing with multi-variate
calibration problems are limited and the model is unhandy to generate short-time prognoses.

Finally, the model disregards “death” as a final disease state. However, this limitation should not be interpreted
as a lack of a necessary property (the model would easily be capable of adding this feature), but originates
from a conscious decision made at the beginning of the modelling process. The feature is irrelevant for our
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modelling purpose and, due to high medial interests of our work, we did not intend to contribute to the rising
panic among the population due to death-count prognoses.
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