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Abstract

To simulate solely the spread of SARS-Cov-2 a variety of methods exists, of which many are probably
more suited for prognoses than agent-based models. Yet, in order to to evaluate the impact of policies like
tracing, individual-based models are required.

We developed an agent based simulation model to reproduce the current outbreak of COVID-19 in
Austria that allows for exploratory analysis of tracing in different characteristics. Aim of this work is
the presentation of this model and consequent evaluation and comparison of different policies: Can we
achieve containment solely by successful tracing or do we need additional policies? How large is the impact
of tracing, keeping in mind that a possibly large number of disease progressions are asymptomatic, yet
infectious?
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1 Model Definition

We will explain our agent-based COVID-19 model based on the ODD (Overview, Design Concepts, Details)
protocol by Volker Grimm et.al. [23,24].

1.1 Overview
The modelling of the spread of the disease is based on the interplay of four modules.

1. Population. Altogether the agent-based COVID-19 model is based on the Generic Population Concept
(GEPOC, see [14]), a generic stochastic agent-based population model of Austria, that validly depicts the
current demographic as well as regional structure of the population on a microscopic level. The flexibility
of this population model makes it possible to modify and extend it by almost arbitrary modules for
simulation of population-focused research problems.

2. Contacts. In order to develop a basis for infectious contacts, we modified and adapted a contact model
previously used for simulation of influenza spread. This model uses a distinction of contacts in different
locations (households, schools, workplaces, leisure time) and is based on the POLYMOD study [30], a
large survey for tracking social contact behaviour relevant to the spread of infectious diseases.

3. Disease. We implemented a module for the course of the disease that depicts the current pathway of
COVID-19 patients starting from infection to recovery or death and linked it with the prior two modules.

4. Policies. Moreover, we added a module for implementation of interventions, ranging from contact-reduction
policies, hygienic measures, contact tracing to vaccinations. This module is implemented in form of a
timeline of events.

1.1.1 Purpose

The agent-based COVID-19 model aims to give ideas about the potential impact of certain policies and their
combination on the spread of the disease, thus helping decision makers to correctly choose between possible
policies by comparing the model outcomes with other important factors such as socioeconomic ones. In order
to fulfill this target, it is relevant that the agent-based COVID-19 model validly depicts the current and near
future distribution and state of disease progression of infected people and their forecasts.

In the following overview of the model, we will not state any parameter values to focus on the model concept.
A full collection of model parameters including values, sources and justifications is found in Section 1.3.3.

1.1.2 Entities and State Variables

Each person-agent is a model for one inhabitant of the observed country/region. We describe state variables
of a person-agent sorted by the corresponding module.

Population. Each person-agent contains the population specific state variables sex, date of birth (= age) and
location. The latter defines the person-agent’s residence in form of latitude and longitude and uniquely maps
to the agent’s municipality, district and federal state.

Contacts. Independent on how, where and with whom the person-agent has contacts with, it is assigned
an individual scalar contactivity parameter that models, how many contacts this agent typically has. This
parameter is sampled once at the start of the simulation and remains constant for the whole simulation time.
Agents with low contactivity have, on average, a smaller number of daily contacts. Moreover each person-
agent features a couple of contact network specific properties. These include a household and might include a



workplace or a schoolclass. We summarise these as so-called locations which stand for network nodes via which
the person-agent has contacts with other agents. As well as person-agents, locations have their own coordinate
which uniquely maps to political regions. Assignment of person-agents to locations is based on distance of the
agent’s residence to the position of the location. Fach day, an agent has a certain number of contacts within
each of the locations, which essentially leads to spread of the disease. To model contacts apart from these
places, every person-agent has an additional amount of leisure time contacts, which are sampled randomly
based on a spatially-dependent distribution. Some loactions are themselves summarised in so-called location-
collections: Multiple schoolclasses and one workplace representing teachers are summarised into one school,
multiple households and one workplace representing care home workers are summarised to one care-home. If
a location is part of a location collection, some contacts are scheduled across different locations within the
collection. The contact network is schematically displayed in Figure 1.

For disease spread, contacts between infectious and susceptible agents are important. Hereby the disease is
transmitted with a certain probability (see Section 1.1.4).
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Figure 1: Contact network of agents in the agent-based COVID-19 model. Regular contacts between agents
occur via locations (schoolclasses, workplaces and households), location-collections (schools, carehomes), while
random leisure time contacts extend the standard contact network.

Disease. In order to model the spread of the disease each person-agent has a couple of health states that display
the current status of the agent. They stand for certain points within the patient pathway of an infected person
and enable or disable, respectively, certain person-agent actions. The disease states relevant for the simulation
dynamics are susceptible, infected, infectious, detected, severity and infectiousness. The prior three are boolean
states, that can either be true or false, and multiple of them can be true at a time. The meaning of these
attributes is self-explanatory: for example an agent with attribute detected=true is detected by a SARS-CoV-2
PCR or antigen test. Note, that we don’t consider false positive tests in the model. To decide about the
progression of the person-agent’s disease a state severity, which can be undetected, mild, severe or critical, is



sampled as soon as the person-agent becomes infected. Disease state undetected states that the agent will have
no (asymptomatic) or very mild symptoms, so it is not going to be detected by the standard test regime, states
severe and critical indicate that the person-agent is going to require hospital care. As soon as infectious=true
the person-agent’s contacts become infectious based on a continuous infectiousness curve that depends on the
date of infection and the disease severity state (see Figure 2).

To make generation of simulation output easier, we sometimes make use of derived parameters such as unde-
tected (=infected \—confirmed) or additional book-keeping variables such as infectious contacts per infected.
Stating all these would make this documentation unhandy and difficult to read though.

Anyway, more on the influence of the state variables and how they change is described in Section 1.1.4.

1.0 1 —— undetected
mild
—— severe
w 081 e
@ critical
(V]
C
3
© 0.61
S
(9]
L
£
o 0.4 A
=
S
©
o
0.2
0.0 A

0 5 10 15 20 25 30
days after infection

Figure 2: Relative infectiousness n-days after infection dependent on the severity state.

Policies. Policies apply either to locations or to person-agent-behaviour directly and require additional agent
properties. All locations except for households are defined open or closed which marks whether this place is
available for having contacts. For person-agents the variable quarantined is applied to mark agents isolated
not only via a positive test but also due to tracing measures.

For the sake of simplicity of speech we furthermore address mentioned parameters as attributes for the corre-
sponding agents. I.e. an agent with infectious set to true will be denoted as “infectious agent”.

1.1.3 Scales

Unlike other agent-based models it is not possible to validly run the model with a smaller number of agents
(e.g. one agent represents 10 or 100 persons in reality) as certain contact-network parameters do not scale this
way (average school size,...). Consequently, one simulation run always uses agents according to the size and
structure of the full population.



1.1.4 Process Overview and Scheduling

Like the underlying population model, the agent-based COVID-19 model can be interpreted as a hybrid between
a time-discrete and a time-continuous (i.e. event-updated) agent-based model:

The overall simulation updates itself in daily time steps, wherein each step is split into three phases. In the
first phase each agent is called once to plan what it aims to do in the course of this time step. In the second
phase, each agent is, again, called once to execute all planned actions for this time step in the defined order.
In the third step, a recorder-agent keeps track of all aggregated state variables.

On the microscopic scope, each person-agent is equipped with its own small discrete event simulator. In the
mentioned planning phase, each agent schedules certain events for the future which may, but not necessarily
must, be scheduled within the current global time step. In the second phase, the agent executes all events that
are scheduled for the currently observed time interval, but leaves all events that exceed this scope untouched.

This strategy comes with the following benefits:

e In contrast to solely event-based ABMs, the event queue is distributed among all agents which massively
increases the speed for sorting (a solely event-based ABM with millions of complex agents would not be
executable is feasible time).

e Moreover, in contrast to solely event-based ABMs, usage of daily transition probabilities/rates instead of
transition times is possible as well.

e In contrast to solely time-discrete ABMs, agents can operate beyond the scope of time steps and sample
continuous time-intervals for their state-transitions.

We shortly describe all actions that are scheduled and executed by one person-agent within one time step
sorted by the specified module.

Population. As briefly described in [14], agents trigger birth and death events always via time- and age-
dependent probabilities that apply for the observed time step (i.e. the observed day). If one of these events
triggers, the agent samples a random time instant within the current time step and schedules the event. Note
that in contrast to the basic population model, immigration and emigration events are disabled in the agent-
based COVID-19 model due to closed borders in reality.

Contacts. Also contact specific events are scheduled and executed within the scope of only one time step. We
summarize all contact events planned and executed within one timestep in Table 1.



Table 1: Contacts sampled within one time-step. In addition to the depicted conditions, quarantined agents
don’t have any contacts outside their household, hospitalised agents don’t sample contacts at all. Moreover,
Poi stands for the poisson distribution, ¢ for the individual contactivity and dlc,dsc and dwc for daily

leisuretime, school and work contacts

condition(s) contact number of | sampling method
type contacts per
time-step
household size of house- | one with every member
contact hold - 1
leisuretime Poi(c- dlc) random in whole agent
contact list, based on regional
distribution
agent has schoolclass N schoolclass is open A | school con- | Poi(c- dsc) fraction randomly in
schoolclass is not quarantined tact own class, rest ran-
domly in whole school
agent has workplace N workplace is open A | workplace Poi(c - dwc) randomly in workplace
workplace is not quarantined A workplace is | contact
not part of location collection
agent has workplace A workplace is open A | school/ care- | Poi(c - dwc) randomly in whole
workplace is not quarantined A workplace is | home work- school/carehome
part of school or carehome place contact
household is part of carehome A carehome is | carehome Poi(c - dwe) randomly in whole
open A carehome is not quarantined contact carehome

Contact partners for leisure time are drawn based on an origin-destination matrix on municipality resolution.
The latter has been gathered from mobile data (see Tables 3-4).

Anyway, planned contacts are always scheduled for the beginning of the new time-step. Hence, interaction
between agents is actually limited to the discrete time steps of the simulation. This guarantees, that the states
of both involved agents do not differ between the time of the planning of the event and its execution.

Disease. First of all, it is important to mention that the model is not parametrised by a reproduction number
Ry or Resy, but by a contact-specific probability for a transmission in case of a contact. Nevertheless, the
agent-based model provides the opportunity to generate estimates for Ry and R.¢s by its original definition:
the average number of secondary infections of an infected agent. Hence, what comes as model input for many
traditional SIR models becomes a model output for the agent-based COVID-19 model.

In case of a contact, infectious agents spread the disease to susceptible agents with a certain infection probability.
This probability calculates as a product of three different factors:

P(transmission) = base infectivity - infectiousness(t) - infection intensity(t, region).

The base infectivity relates to Ry of the disease and stands for the base probability of an infection if not
reduced by any other factor. Based on the time and severity of the disease, the infectious agent has a current
infectiousness. The third factor is a location/region dependent relative infection intensity parameter used to
calibrate e.g. seasonality effects of adherence.

Anyway, an infectious contact triggers the start of the newly-infected agent’s patient-pathway. This pathway
describes the different states and stations an agent passes while suffering from the COVID-19 disease and can
be interpreted as a sequence of events of which each triggers the next one after a certain sampled duration.
We show this infection strategy in a state chart in Figure 3 and describe how to interpret this figure by explaining
the initial steps in the pathway in more detail: As soon as a person-agent becomes infected, its infected state is



set to true, its susceptible variable is set to false, and its severity parameter is drawn from a given distribution.
Moreover, a latency period is sampled according to a distribution as well. The corresponding “Infectious” event
is scheduled for the sampled time instant in the future. As soon as this “Infectious” event is executed, the
infectious parameter is set to true and a parallel branch that updates the infectiousness is started. After the
“Finish Incubation” event, the first branch in the patient’s pathway decides whether the agent continues being
detected by the standard test-regime, or continues undetected due to mild or nor symptoms at all. All other
elements of the pathway follow analogously. All branches are evaluated with age-class-dependent probabilities
(see Section 1.3.3).

In most cases (i.e. if the agent does not die for any other non-COVID related reason - see Population module),
the final state of every agent’s disease pathway is the Recovery/Removal event with either sets the agent
resistant (it is not susceptible anymore, or renders it deceased with a certain death-by-COVID probability
that depends on the agent’s disease severity. Consequently, the model differs between COVID-caused and
COVID-affected deaths.

Policies. Every policy is modelled as a global event occurring before the planning phase of any of the simulation
time steps. Policies are timed-events that are fed into the model as an event-timeline (see Figure 4). The ele-
ments of this timeline may include real policies like closure or opening of locations, start of tracing, vaccination
rounds (for a full list, see Table 7), but may also contain incidents that change the model behaviour but are
not directly related to policies, such as raising hygiene awareness or seasonality. The most outstanding feature
of the model is clearly its ability to model contact tracing policies, since agents are aware of all other agents
with which they had contacts. Using simple housekeeping arrays, these can be logged for a certain period of
time and used for detection and isolation of contact partners.

Due to the huge flexibility of this strategy, the pool of available policies that can be added and combined in
simulation scenarios is huge. In Table 7 the reader finds those which have been included to the canonical
main-version of the model and which used for the most fundamental research problems. Some popular model
extensions are shortly explained at the end of this document.
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Figure 4: Event-timeline as the input of the simulation model in contrast to standard model parameters.

1.2 Design Concept

1.2.1 Basic Principles.

Increasing the level of detail from a standard epidemiological model for simulation of disease waves to a model
that is capable of dealing with various different policies is a huge step with respect to model complexity. It
excludes the use of macroscopic strategies and requires modelling of a contact network and contact behaviour.
Consequently a detailed demography, spatial components and stochasticity need to be introduced to the model
which come with a huge number of additional parameters and parameter values.

Hence, we were very careful that the agent-based model is designed as simple as possible yet tracking the most
important features for evaluation of certain policies. Hereby, many details within the pathway of an infected
person and, in particular, lots of details within the personal daily routine are simplified to avoid indeterminable
model parameters and unpredictable model dynamics.

1.2.2 Emergence.

In addition to the classic emergence of nonlinear epidemiological effects, analysis of the effects of interaction
between different measures is one of the key objectives of the model. For example, seemingly unconnected
policies like school closure and contact reduction for the 65+ might lead to unexpected effects when applied
simultaneously. More generally speaking, the model displays that the individual effects of applied policies do
not add up linearly.

1.2.3 Sensing.

Agents’ perception of reality is one of the key problems of modelling COVID-19 as no agent is actually aware
of its own disease and, more importantly, infectiousness until symptoms occur. Therefore, agent parameters
can be distinguished into two sets: the ones the agent is aware of (e.g. detected, hospitalised), and the ones it
is not (e.g. infected, infectious).

Interestingly, besides the individual perception of agents and the perception of an omniscient observer, there is
also a third level of perception included into the model: the perception of the general public. While an individual
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Figure 5: Infections per infected of a fully unconstrained epidemic wave. Note, that such a scenario causes the
average number of secondary infections per infected tracked over the whole time-frame (here calculated as )
to be slightly smaller than 1. The dispersion factor d can be estimated by the stated formula considering mean
and variance of the distribution.

agent knows about its symptoms, the public is not yet aware of this additional infected case, until the person-
agent has reacted on the disease, has had itself tested and eventually becomes confirmed. Consequently, the
levels of perception can be sorted with regards to their amount of knowledge:

omniscient observer > person-agent > general public.

1.2.4 Interaction.

Interaction between agents only occurs in form of contacts at locations or leisure time. The features pro-
vided by the underlying population model make it possible to investigate contacts on a very local level. As
described before, leisure time contacts are weighted by their regionality, but also school and workplace con-
tacts depict locality: Using specified latitude and longitude for locations, it is possible to assign person-agents
with distance-dependent probabilities (see Section 1.3.1). Consequently, interactions between agents follow a
spatially-continuous locally-biased contact network.

1.2.5 Stochasticity.

Basically all model processes, including the initialisation, contain sampling of random numbers. Therefore,
Monte Carlo simulation is applied, results of runs are averaged and also their variability is assessed (see Section
2.1).

Yet, besides being time-consuming to flatten, the stochasticity of the model is actually its key strength. It
allows to model heterogeneity and skewness of the infection-network which distinguishes the model from classic
macroscopic approaches. This specifically refers to the way, how contacts are modeled: Since the person-agent’s
contactivity is initially drawn from a Gamma distribution, the contacts sampled via Poisson distribution result
in a so-called Gamma-Poisson mix, which is by definition Negative-Binomial distributed. This strategy allows
to directly parametrise the skewness of the contact network to published information on the dispersion factor
of COVID-19 clusters (see Figure ?7.
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1.2.6 Observation.

Inspired by [31], a recorder-agent takes care about tracking and aggregating the current status of the simulation.
At the end of each global time step, all person-agents report to the recorder-agent which furthermore keeps
track of all necessary aggregated model outputs. This includes for example confirmed active cases, confirmed
cumulative cases, hospitalised agents, undetected agents, incubating agents, recovered agents, agents in a certain
hospital, or average-number of contacts per infectious agent. If required, numbers can also be tracked with
respect to age, sex, regional level and/or contact-location.

1.3 Details

Clearly, Section 1.1 could only outline the basic concepts of the model and left a lot of technical and modelling
details necessary for a reproducible model definition open. In particular, this refers to the highly non-trivial
initialisation process of the model. Hereby, two problems occur that require completely different approaches.
The first problem considers the generation of the person-agents, locations and hospitals in the first place. The
second problem deals with the initialisation of the status quo of the distribution of the disease states of the
agents for the specified initial date.

1.3.1 Initialisation of Person-agents, Locations and Hospitals.

A lot of problems that deal with the sampling of the initial population have already been solved in the
original GEPOC model [14]. In particular this refers to the Delaunay-triangulation-based sampling method
for locations. We apply this method to merge information from the national statistics institute and the global
human settlement layer [21]. Consequently, besides initialisation of the disease states which is described in the
next section, only new methods for location- and hospital-generation had to be implemented.

In general, locations and location collections are initialized in a two step mechanism. First, the location /
location collection is created with a certain capacity. Secondly, the location / location collection is filled with
agents / locations using a regional distribution. Similar to the sampling algorithm for leisure time contacts, an
origin-destination matrix on district level gathered from mobile phone data is used in the following way:

1. Filter the agent list for all agents that are suitable for being assigned to the location.

2. Given a certain location in district  and municipality xz, draw a random district y according to the
distribution in the matrix.

3. If x # y, pick a randomly chosen agent from district y. If this fails, return to 2.

4. If x = y, a Bernoulli experiment decides to either pick a random agent from xx or from somewhere else
in x. If this fails, return to 2.

For location collections, we follow more-less the same strategy, with suitable locations instead of agents. We
go into more detail about sampling and filling having a look at the specific location types:

Households are initialised given a discrete distribution of their sizes and household members. We hereby
distinguish between five groups: children (age < 18), male and female adults (18 — 64) and male and female
retired (654). The number of households is created on demand, so that every person-agent can be assigned a
household eventually. Household coordinates are drawn according to the same algorithm as creation of person-
agents. and they are filled, as explained above. After a household is successfully filled, all coordinates of all
household members are set manually to the coordinate of the household.

11



Workplaces! are initialised with a certain capacity by a workplace-sampler based on district-level data about
branches of industry. Given the district, the coordinate is sampled re-using the mentioned sampler for person-
agent coordinates. Note, that the workplace is hereby also assigned a certain occupation which will be required
for sampling of carehome and school workplaces. Filling of workplaces works analogous to households, yet
coordinates of person-agents remain unchanged.

Schools and schoolclasses are initialised based on known distributions w.r.t. average school size and number of
pupils in total. We distinguish between schools for children below 14 and older. A school-sampler iteratively
generates school and a assigns a random number of new created schoolclasses (triangular distribution) wit
fixed capacity. The process is repeated until the sum of all schoolclass capacities matches the known number
of pupils in reality. In a next step, each school is assigned one of the created workplace with branch “teaching”
and the school’s coordinate is set to the coordinate of the workplace. In a next step, classes are filled with the
same algorithm as workplaces. Clearly, the number of model agents in the group of agents below 18 is larger
than the number of pupils. Consequently, we force distribution of all 6 to 14 year old agents, and distribute as
many 15 to 18 year old agents as possible. All remaining 15 to 18 year old agents are considered to be working
or unemployed.

Care-homes are generated with a fixed size and providing space for a fixed number of inhabitants. Analogous to
schools, every carehome is assigned a workplace with the corresponding branch and coordinates are harmonized.
Furthermore, suitable households are assigned using the mentioned filling algorithm.

Finally, hospitals are generated based on publicly available data. This includes capacities (beds, intensive-care
units) as well as their location (latitude and longitude).

1.3.2 Initialisation of the Disease State

The spread of SARS-CoV-2 displays probably better than any other system, that the most dangerous enemy
is the invisible one. While confirmed infected persons are detected and well known, they hardly contribute to
the spread of the disease — they are already isolated properly, and most infections occur even before the onset
of symptoms.

Consequently, it is not possible to simply “start” the simulation with a certain number of confirmed cases,
acquired for example from official internet sources. Valid values for pre-symptomatic (e.g. persons within
latency and incubation period) and asymptomatic persons need to be acquired as well — yet, this number is
hardly measurable in reality.

In order to solve this problem, a three stage concept, henceforth denoted as initialisation phase, was designed
to generate a feasible initial state for a certain time tg:

1. Initialise-Simulation. The agent-based COVID-19 model is set up with a small number of initially
infected agents (40 was found to be the most stable and useful option). This number corresponds to an
estimated count of initial infection clusters in the country, but actually hardly influences the outcome.
Furthermore, the agent-based simulation is run and interrupted by a state event, namely if the cumulative
number of confirmed agents in the model is greater or equal to a specific value C(t_1). Hereby, t_; refers
to a self chosen point in time and C(t_1) to the reported number of positive tests in reality until ¢_;.
Hereby t_; must be chosen properly so that the reported number of positive tests is large enough to be
representative yet before implementation of any policies.

As soon as the simulation is interrupted by the state-event, the timelines of simulation and reality are
synced: t_1 in reality becomes ¢_1 in the simulation.

IWorkplaces should not be confused with total companies. They rather represent the different teams where the members are
in regular contact with each other.
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The initialise-simulation is continued, considering all policies that have been implemented in reality,
until, finally, ¢y is reached. Properly calibrated by a calibration routine (see Section 1.3.4), the initialise-
simulation contains approximately the same cumulative number of confirmed agents as the corresponding
reported number in the real system.

The initialise-simulation is finished by exporting parts of the final state of the simulation. This refers
to all households that contain either infected or recovered agents which are finally written into a file.
Hereby, an initial population is generated that contains not only a valid approximation of the confirmed
cases, but also a valid estimate for the unknown pre-symptomatic and asymptomatic persons, a correct
distribution of their future planned events and a correct household distribution as well.

2. Fine Tuning. Even with best calibration routines (see Section 1.3.4) it is not possible to perfectly match
the model output with the status quo in reality, in particular w.r.t. regional distribution. Therefore,
a bootstrapping algorithm was implemented that corrects the small differences between the initialise-
simulation output and the real data (confirmed cases, hospitalisation, intensive-care units and recoveries
per region) to make sure, that the initial state of the actual simulation matches the current state precisely.
This step can be omitted, if matching the current state precisely is not required.

3. Load Households. Finally, the actual simulation is initialised with the previously recorded and fine-
tuned agents from the initialise-simulation. To be precise, this process does not only include agents
themselves, but also the households these agents live in. Hereby, the fundamental network structure from
the initialise-simulation can be maintained.

1.3.3 Parametrisation

With respect to parametrisation, we will distinguish between model input and model parameters.

Classical model parameters specify scalar or array-typed model variables that are initialised at the beginning
of the simulation and, if not changed by certain model events, keep their value for the entire simulation time.
Examples are the infection probability of the disease, the age-dependent death rate of the population, or the
distribution parameters of the recovery time.

In contrast to model parameters, the model input consists of an event-timeline that describes at which point
in time a certain incident changes the behaviour of the model. This incident usually refers to the introduction
of a policy, e.g. closure of schools or start of tracing, but may also refer to instantaneous changes of model
parameters which are related but cannot be directly attributed to policies, e.g. the increase of compliance
among the population to increase hygiene.

In the following, we state lists of used parameters and parameter-values including corresponding sources and /or
justifications. They are found in Tables 2 to ?7?. Table 7 states a list of possible event-timeline elements that
can pose as the model’s input.

Table 2: List of population specific parameters

parameter description value source

birthrates, deathrates, | parameters used by | see source rates and population tables from

inatial population, re- | the underlying popu- Austrian National Statistics In-

gtonal distribution lation model stitute [9]. Maps from the Global
Human Settlement Project [20]
and [4].
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1.3.4 Calibration

Clearly, there is no valid data available for direct parametrisation of the base infection probability parameter
which is (next to infection intensity and the ) the most fundamental of the three factors that decide about
a transmission in case of a direct contact. First of all, this parameter is hardly measurable in reality and
moreover strongly depends on the definition of “contact”. Consequently, this parameter needs to be fitted in
the course of a calibration loop.

The calibration experiment is set up as follows:

1. We vary the parameter infection probability using a bisection algorithm.

2. For each parameter value, the simulation, parametrised without any policies, is executed ten times (Monte
Carlo simulation) and the results are averaged.

3. The average time-series for the cumulative confirmed cases is observed and cropped to the beginning
upswing of the epidemic curve, to be specific, all values between 200 and 3200. In this interval the
growth of the curve can be considered as exponential.

4. The cropped time-series is compared with the corresponding time-series of real measured data in Austria,
specifically the confirmed numbers between March 10" and 20*® 2020 (source EMS system, [2]).

5. Both time-series are compared w.r.t. the average doubling time of the confirmed cases. The difference
between the doubling times is taken as the calibration error for the bisection algorithm.

Note: As the sample standard deviation of each observable of the runs has been observed to be at most a fifth
of the sample mean, the iteration number of nine for the Monte Carlo simulation has been considered to be
sufficient for calibration purposes w.r.t. the ideas in [15,26].

After calibrating the infection probability parameter, also the parameters of the input timeline of the initialisation-
simulation needs to be calibrated to the policies applied in the real system. For this, we split the events in the
policy timeline into three types:

e Events that can be modelled and parametrised directly (e.g. closure of schools)
e Events which impact needs to be estimated (e.g. reduction of leisuretime contacts)

e Events that do not directly related to policies, but represent other influences. These are summarized as
infection intensity events.

We do not regard the first two events in an automatic calibration routine, but model and parametrise them as
well as possible using given information about active policies and expert opinions. To guarantee the fit of the
model, we focus on iteratively adding events of the third type.

Analogous to the base infectivity, this is done iteratively using a bisection algorithm as well.

1. Define a date x of the first infection intensity event.

2. Vary the region-dependent (federal-states/ or districts) value of the event using a bisection strategy,
knowing, that 1 is an upper and 0 is a lower bound of the parameter value.

3. Evaluate the impact of the event, by comparing the modelled detected cases (Monte Carlo simulation)
with the officially reported ones on x + 14[d].

4. After sufficiently many iterations, set x < x + 14[d] and continue with the next time-period, until the
current day (i.e. the day where we want to start the actual simulation) is reached.
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2 Model Implementation

Simulation of agent-based models like the agent-based COVID-19 model is a huge challenge with respect to
computational performance. As the model cannot be scaled down, almost 9 Million interacting agents need to
be included into the model in order to simulate the spread of the disease in Austria.

These high demands exclude most of the available libraries and software for agent-based modelling including
AnyLogic [22], NetLogo [33], MESA [28], JADE [12] or Repast Simphony [32]. Most of these simulators cannot
be used as their generic features for creating live visual output generates too much overheads.

Consequently, we decided to use our own agent-based simulation environment ABT (Agent-Based template,
see [3]), developed in 2019 by dwh GmbH in cooperation with TU Wien. The environment is implemented in
JAVA and specifically designed for supporting reproducible simulation of large-scale agent-based systems.

The next section contains more technical details about the implementation.

2.1 Technical Implementation Details

The implementation of the agent-based COVID-19 model uses JAVA 11 and applies the UniformRandomPro-
vider random number generator (RNG) by Apache Commons [1]. This RNG implements a 64 bit version of
the Mersenne Twister [29] and exceeds the standard RNG of JAVA, a simple Linear Congruential Generator,
in both performance and quality.

The simulation itself is always executed in a Monte Carlo setting and several runs with different RNG seeds are
averaged. Due to the huge number of agents, a Law-of-Large-Numbers-effect can be observed (similar to [13]
Chapter 5.2), and the standard deviation of the model output is always comparably small. Consequently,
Monte Carlo replication numbers of 10 to 20 are usually enough to estimate the mean sufficiently well (we
apply the algorithms from [15, 26]).

3 Features and Limitations

Due to the highly flexible policy timeline, the model is capable of testing and combining lots of different policies
in different characteristics at different times. Hence, it can easily depict almost any specified policy announced
in reality, if estimates for the policy parameters are available.

The latter statement particularly refers to combination of policies: although the model correctly depicts the
epidemiological impact of the combination of policies, the social impact needs to be parametrised manually.
For instance, the causal relation between closed schools and intensified parent-children contacts needs to be
parametrised and is not given by the model dynamics.

Unfortunately, as the model cannot be scaled down, a huge number of agents lead to long computation times,
and the necessity of Monte Carlo simulation for flattening of stochastic results increases the time required to
get simulation output even further. Consequently, the simulation’s capabilities of dealing with multi-variate
calibration problems are limited. Consequently, the model is well capable but unhandy to generate (short-time)
prognoses.

4 Model Extensions

Since the model is actively used within decision support in Austria, a couple of model extensions needed to
be implemented on direct demand. In this section, we roughly explain the most important of these extension
modules.
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4.1 Vaccination Planner

Purpose. By Summer 2020, the model has been used to council the Austrian vaccination planning board.
Hereby the model was put in the loop of an optimization routine to generate an optimal vaccination prioriti-
zation plan. The reader is referred to [25] for more information.

Model. We regarded five target groups for vaccination round events (elderly, mid-age, young, health-care
workers, vulnerable). To depict the latter, additional relevant co-morbidities were distributed among the agents.

Data. We used freely available published data from different sources. The reader is referred to [25].

4.2 Tourism

Purpose. In the time span of the big COVID-19 waves in Austria, the fraction of SARS-CoV-2 infected
persons travelling to Austria from other countries has been negligible small due to strict quarantine laws. Yet,
over the summer months, case numbers in Austria reached very low levels, so that imported cases could not
be neglected anymore. To maintain our duty to calculate short time prognoses for the ministry of health we
added a tourism module.

Model. Each model time-step a certain number of randomly chosen uninfected agents are set to infected.
This infection happens without any infectious contact with infected agents within the country, thus modelling
disease transmissions outside the system boundaries.

Data. We used freely available tourism data from the national statistics institute Statistik Austria [5] and
calibrated the total number of imported cases.

4.3 Mass-Testing

Purpose. In winter 2020 the Austrian government started a “mass-test” initiative in which a broad cross-
section of the country’s inhabitants were tested for SARS-CoV-2 infections. Hereby, undetected and spreading
CoV infected person should be made visible and put under quarantine. Our goal was providing estimates for
the impact of this policy.

Model. Mass tests are modelled as an additional event type that can be used in the event timeline as model
input. As soon as the event is triggered, a certain number/fraction of inhabitants is tested for SARS-CoV-2.
If an unconfirmed /pre-symptomatic infected agent is found hereby, it is set to confirmed and isolated.

Data. We used official data for test sensitivity and test specificity and varied the number of participants.

4.4 Mutants

Purpose. By Spring 2021, different more infectious variants of the virus start to spread around the world,
in specific the B.1.1.7 lineage replaced the previous variants in Austria. To model this replacement process,
different virus variants have been implemented.
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Model. A transmission occurs with a virus-strain-dependent probability and the virus strain is transmitted.
An additional event to introduce a new strain in the country was implemented.

Data. We calibrated the excess infectivity of the strain from publicly available variant-surveillance data
sources in Austria provided by AGES [2].

4.5 SEIR— SEIRS

Purpose. By Spring 2021 first data about re-infections became available. Since, the question about impact of
the immunization level of Austria are highly important, the possibility for re-infections could not be neglected
anymore.

Model. A recovery from the disease renders the agent immune for a limited time-span only.

Data. The model was calibrated to official data for re-infections (Epidemiologisches Meldesystem by AGES

[2])-
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Table 3: List of contact specific parameters (1/2). Note that all parameter values are specified for the standard
model without policies. The I-distribution is given as I'(k, ).

parameter

description

value

source

contactivity
(henceforth ct)

individual parameter to scale the av-
erage number of contacts per day, to
ensure the skewness of the contact-
network

X ~1(0.6,1/0.6)

calibrated to match a network
dispersion factor of 0.43 as
published in [6]

leisure time
contacts per
day

number of leisure time transmission-
relevant contacts of an agent per day

X ~ Poi(ct-6.11)

based on the results of the
POLYMOD study [30]

workplace con-
tacts per day

number of transmission-relevant con-
tacts at work (if assigned) of an agent
per day. Same values used for care-
home contacts.

X ~ Poi(ct - 5.28)

based on the results of the
POLYMOD study [30]

school contacts
per day

number of transmission-relevant con-
tacts at school (if assigned) of an agent
per day

X ~ Poi(ct - 4.64)

based on the results of the
POLYMOD study [30]

contact in | probability of a pupil to draw a contact | 10% Estimate

other class | partner from the whole school and not

probability only its own class

household sizes | distribution of household sizes and | see source distribution and structure from

and structure

structure

freely accessible tables for
household statistics from the
Austrian National Statistics
Institute [9]

school class

sizes

Capacity of school classes

20 for schools with pupils
below 14, 23 otherwise

gathered from a publication of
the Austrian National Statis-
tics Institute [10]

school sizes

The actual number of schools and

X~ Tri(p/3, p,5p/3),
il

counts gathered from a pub-

pupils were gathered to calculate the | with p = 25222 lication of the Austrian Na-
average number of classes per school. tional Statistics Institute [10].
Based on this average, the class- Bounds for triangular dis-
capacities of schools in the simulation tributed were estimated.
are sampled with triangular distribu-
tion.
workplace sizes | discrete distribution of workplace sizes | see source gathered from a survey [11] by
the Austrian National Statis-
tics Institute
workplace Industrial branch parameter of the | see source Austrian National Statistics
branches workplace. We distinguish 21 branches Institute (see [7] for federal-
according to the top level code of the state data, data on district
ONACE 2008 norm. Two additional level behind paywall)
branches, care-home workers (Q.86)
and teachers (P.85.2-4), were added for
obvious reasons
care-home The actual number of care-homes w | see source counts gathered from freely ac-
units staff and residents were gathered to cessible tables from the Aus-

calculate the number of care-home
units given a maximum capacity of 20
residents

21

trian National Statistics Insti-
tute [8]



Table 4: List of contact specific parameters (2/2). Note that all parameter values are specified for the standard
model without policies.

parameter

description

value

source

regional  sam-
pling of leisure
time contacts

leisure time contact partners
are sampled based on origin-
destination matrices on munici-
pality level

Average fraction of all stays of per-
sons from municipality X within mu-
nicipality Y for all municipalities X
and Y of Austria

gathered from mobile
phone data evaluated for
January 2020

regional dis- | schools, workplaces and care- see Table 2 and workplace
tribution of | homes are created based on branches in Table 3
schools, work- | known information about work-
places and | ers, teachers and carehome em-
carehomes ployees per district. The ac-

tual coordinate in the district is

sampled using the sampling algo-

rithm of the underlying popula-

tion model
regional as- | inhabitants of schools, work- | Average fraction of all stays of per- | gathered from mobile
signment of | places and carehomes are | sons from district X within district | phone data evaluated for
schools, work- | assigned based on origin- | Y for all district X and Y of Austria | January 2020
places and | destination matrices on district
carehomes level
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Table 5: List of disease specific parameters (1/2)

parameter description value source
base infection | probability that a contact be- | o = 0.057 calibrated based on the
probability tween a susceptible and an in- doubling rates in Aus-
fected agent leads to a transmis- tria before introduction
sion. of policies (see Section
1.3.4).
infection Location and region dependent | Base setting: Same | see Section 1.3.4.
intensity factor that scales the infection | for all regions, 1
probability in case of a contact. | in all locations ex-
Usually modified by calibration | cept households, 5
using infection intensity events. in households
infectiousness | models the virus load in an | see Figure 2 merged information
curve infectious agent as a severity- about the shedding
dependent function of time, that duration from [17] and
scales the infection probability in qualitative information
case of a contact about the shape of the
curve from |?]
incubation time between infection and symp- | scaled B dis- | based on [27]
time tom on-set tribution with
min(X) = 2[d],
max(X) = 14[d],
E(X) = 5.1[d]
reaction dura- | time between symptom on-set | Updated regu- | processed from officially
tion and testing of the agent which | larly, most re- | reported data (Epidemi-

furthermore leads to its confirma-

cent values X ~

ologisches Meldesystem

tion and home isolation Gamma(1.75,1.45)[d] [18])
delays (mild, | durations  between  different | see Figure 6 gathered from Austrian
severe, criti- | points in the disease pathway hospitalization records
cal) of agents. That is: test — (not public, see also
recovery, test — hospitalisation, [16])

hospitalisation — icu, icu — re-
hospitalisation,  hospitalisation
— recovery, re-hospitalisation —
recovery

recovery time

time between symptom on-set

Tri(1,5, 7)[d]

based on expert opin-

unconfirmed and recovery for unconfirmed ions
persons (usually asymptomatic)
recovery time between test and recovery | Tri(7.5,10.5,15.5)[d]| based on expert opin-
time  home- | for confirmed infected persons ions
quarantined with mild disease
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Table 6: List of disease specific parameters (2/2).

parameter description value source
detection probability of an in- | continuously updated; cur- | Age distribution is gathered by
probability fected person to get | rent values:[ 8, 34, 45, 39, | comparison of Austria’s age pyra-
detected by a test 41, 42, 28, 25, 43, 68 |% for | mid with the distribution of the
10 year age-classes confirmed cases. The overall de-
tection probability for Mar-Jul is
calibrated to 35% as suggested by
a Austrian trial in autumn 2020

[5].

hospitalisation | age-dependent 2020, continuously up- | Distribution is based on com-
probability probability that a | dated; current values: [ 6, | parison of the age distribution

detected patient
requires hospitali-
sation

1,2,2, 7, 10, 26, 48, 61, 53
1% for 10 year age-classes

of confirmed cases with the age
distribution of hospitalised cases
(Epidemiologisches Meldesystem

[18]).

icu probability | probability that a | 16.6% calibrated for Austrian ICUs with
hospitalised agent data from the ministry of internal
becomes critical affairs
(needs an intensive
care unit)
death-by- probability that | 0% No data is available. Moreover,
COVID-19 an unconfirmed unconfirmed COVID-19 cases are
probability - | infected agent dies typically asymptomatic.
unconfirmed due to COVID-19
death-by- probability that a | continuously updated; cur- | Distribution is based on compar-
COVID-19 non-hospitalized rent values: [ 0.0, 0.0, 0.0, | ison of the age distribution of
probability - | (mild) infected | 0.0, 0.0, 0.1, 0.5, 1.9, 6.1, | confirmed non-severe and non-
mald agent dies due to | 18.1], ]% , for 10 year age- | critical cases with the age distri-
COVID-19 classes bution of fatal cases (Epidemiol-
ogisches Meldesystem [18]).
death-by- probability that an | continously updated; cur- | Distribution is based on compari-
COVID-19 infected agent re- | rent values: [ 0.0, 0.0, 0.0, | son of the age distribution of con-
probability - | quiring a mnormal | 0.0, 0.0, 0.0, 1.0, 11.3, 16.8, | firmed severe cases with the age
severe bed (severe) dies | 25.8 |% ,for 10 year age- | distribution of fatal cases (Epi-
due to COVID-19 classes demiologisches Meldesystem by
AGES [18]).
death-by- probability that an | continuously updated; cur- | Distribution is based on com-
COVID-19 infected agent re- | rent values: [ 0.0, 0.0, 0.0, | parison of the age distribution
probability - | quiring an ICU bed | 0.0, 1.5, 1.2, 8.3, 12.8, 12.5, | of confirmed critical cases with
critical (critical) dies due to | 42.8 1%, for 10 year age- | the age distribution of fatal cases

COVID-19

classes
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Table 7: List of possible event-timeline elements that can pose for the model’s input including their effect and,
if available, options for the event parametrisation.

event description parameters
infection inten- | Multiplies to the the infection probabil- | affected location type; affected
sity ity for contacts in a certain locations | region; factor to scale the origi-

or regions. Represents seasonality or
adherence caused changes in the infec-
tivity of the disease. This event is usu-
ally used for calibration of the model
to real-data.

nal infection probability with

leisure-time con-
tact number re-
duction event

Based on an age-class (child, adult, re-
tired) and/or region (municipality, dis-
tricts, federalstates) dependent proba-
bility, an agent may “reject” a leisure-
time contact with a different agent. As
the rejection happens symmetrically,
the probabilities multiply.

affected  region; age-class-
dependent fraction by which
daily leisure-time contacts are
reduced

location closing
event

Fraction of locations of a certain type
are closed in this policy.

affected location type; fraction of
locations of this type that remain
open / are opened

start location
tracing event

Starts with location tracing measures.
Le. all members of a newly confirmed
agent’s location are put under preven-
tive isolation for a certain period of
time.

affected location type; length of
preventive quarantine length

start contact
tracing event

Starts with contact tracing measures.
I.e. recorded contacts of a newly con-
firmed agent are put under preventive
isolation.

fraction of agents capable of
recording contacts; length of pre-
ventive quarantine length

vaccination
round event

Distributes a number of given vac-
cine doses of a certain type to capable
model agents
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number of doses; type of vaccine
(e.g. first or second dose); target
groups; vaccine effectiveness and
time delay
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